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1. Introduction

Whenever a counting problem pertaining to some mathematical object � produces a
sequence of non-negative integers a�(n) (n = 1, 2, . . . ) we can hope to gain infor-
mation by incorporating our sequence into a generating function. There are various
ways of doing this, for example as coefficients of power series, sums representing
automorphic functions and Dirichlet series. Sometimes there is a natural choice of a
generating function dictated by the recursive properties of the sequence a�(n). We
report here on counting problems where the choice of a Dirichlet series seems to be
appropriate.

We consider first two counting problems relating to a finitely generated group G.
Write [G : H ] for the index of a subgroup H ≤ G and let

a<

G(n) := |{ H ≤ G | [G : H ] = n }|, a�
G(n) := |{ H � G | [G : H ] = n }| (1)

be the number of subgroups or normal subgroups of index precisely n in G. The
numbers a<

G(n) all being finite we call

ζ <

G(s) :=
∞∑

n=1

a<

G(n) n−s =
∑

H≤f G

[G : H ]−s (2)

the subgroup zeta function of G. The symbol H ≤f G indicates that the summation
is over all subgroups H of finite index in G. Similarly, we define

ζ �
G(s) :=

∞∑
n=1

a�
G(n) n−s =

∑
H�f G

[G : H ]−s (3)
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to be the normal subgroup zeta function of G. When we intend to address both types
of zeta functions simultaneously we write ζ ∗

G(s) for ζ <

G(s) or ζ �
G(s).

For the second type of counting problem we consider a ring R, which is for our
purposes an abelian group R carrying a biadditive product. Let us write S ≤ R if S

is a subring of R and a � R if a is a left ideal of R. Let

a<

R(n) := |{ S ≤ R | [R : S] = n }|, a�
R(n) := |{ a � R | [R : a] = n }| (4)

be the numbers of these subobjects of R which have index n ∈ N in the additive group
of R. The numbers counting subrings are finite if the additive group of R is finitely
generated. The numbers counting ideals are all finite under the weaker hypothesis
that the ring R is finitely generated. Given these circumstances define the subring
zeta function or the ideal zeta function to be respectively

ζ <

R(s) :=
∞∑

n=1

a<

R(n) n−s, ζ �
R(s) :=

∞∑
n=1

a�
R(n) n−s . (5)

Again we write ζ ∗
R(s) for ζ <

R(s) or ζ �
R(s).

While the study of the zeta functions of a finitely generated group was only begun
in [27], the ideal zeta function of a ring has the Riemann zeta function (R = Z) or
more generally the Dedekind zeta function of the ring of integers in a number field as
special cases (see [32]).

We wish to consider the Dirichlet series (2), (3), (5) not only as formal sums but
as series converging in a non-empty subset of the complex numbers. By general
theory this subset may be taken to be a right half-plane. In fact, this convergence
condition will be satisfied if and only if the coefficients in the series (2), (3), (5) grow
at most polynomially in n, more precisely if and only if there are t, c∗ ∈ R such that
a∗
G(n) ≤ c∗nt respectively a∗

R(n) ≤ c∗nt holds for all n ∈ N. In this case we will say
that G has polynomial subgroup or normal subgroup growth, the ring R will be said
to have polynomial subring or ideal growth. For finitely generated groups G there
is the following beautiful characterisation of this property by A. Lubotzky, A. Mann
and D. Segal (see [36]).

Theorem 1.1. Let G be a finitely generated residually finite group. Then G has
polynomial subgroup growth if and only if G has a subgroup of finite index which is
soluble and of finite rank.

A group G is called residually finite if for every non-trivial g ∈ G there is a
subgroup H of finite index in G with g /∈ H . Of course, this assumption is natural
for Theorem 1.1 to hold. A group G is said to be of finite rank r ∈ N if every finitely
generated subgroup of G can be generated by at most r elements.

In the following we shall assume that

• either � = G is an infinite finitely generated torsion-free nilpotent group,

• or � = R is a ring with additive group isomorphic to Zd for some d ∈ N.
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We shall denote the set of isomorphism classes of such objects by T .
Finitely generated torsion-free nilpotent groups satisfy the growth condition in

Theorem 1.1. Their classification up to isomorphism is intimately connected with the
reduction theory for arithmetic groups (see [24]). In addition there are connections
between special classes of nilpotent groups and certain diophantine problems includ-
ing the question of equivalence classes of integral quadratic forms ([25]). See [26]
for a panorama of finitely generated torsion-free nilpotent groups. The class of rings
in T contains all rings of integers in number fields and also (for example) the integer
versions of the simple Lie algebras over C.

For � ∈ T the zeta functions share a number of features in common with the
Dedekind zeta function of a number field. Before we report the story let us mention
some examples. Considering Zd (d ∈ N) as a direct product of infinite cyclic groups
we find ζ ∗

Zd (s) = ζ(s)ζ(s − 1) . . . ζ(s − d + 1) where

ζ(s) = ζ <

Z(s) = ζ �
Z(s) =

∞∑
n=1

n−s =
∏
p

1

1 − p−s

is the Riemann zeta function. A more elaborate example concerns the discrete Heisen-
berg group H3, that is the group of strictly upper triangular 3×3-matrices with integer
entries. The group H3 is a torsion-free, nilpotent group of class 2 generated by two
elements. The following formulas are proved in [46], see also [27].

ζ <

H3
(s) = ζ(s)ζ(s − 1)ζ(2s − 2)ζ(2s − 3)

ζ(3s − 3)
, ζ �

H3
(s) = ζ(s)ζ(s−1)ζ(3s−2). (6)

For an interesting example of the zeta function of a ring we can consider sl2(Z), the
additive group of integer 2 × 2-matrices of trace 0 with the usual Lie bracket. The
following formula was finally proved in [21] after contributions in [29], [5], [6]

ζ <

sl2(Z)(s) = P(2−s)
ζ(s)ζ(s − 1)ζ(2s − 2)ζ(2s − 1)

ζ(3s − 1)
(7)

where P(x) is the rational function P = (1 + 6x2 − 8x3)/(1 − x3).
All these examples of zeta functions of members of T have three distinctive

properties (evident from the formulas given):

• they converge in some right halfplane of C,

• they decompose similarly to the Riemann or Dedekind zeta function as an Euler
product of some rational expression in p−s taken over all primes p,

• they have a meromorphic continuation to C.

We believe that these three properties already justify the name zeta function for the cor-
responding generating function. A fourth property of the Dedekind zeta function, the
global functional equation (see [32]) is hardly conceivable looking at formulas (6), (7).
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Let us define now what will be the Euler factors of the zeta function of a general
� ∈ T . For a prime p we set:

ζ ∗
�,p(s) :=

∞∑
k=0

a∗
�(pk) p−ks . (8)

This expression can be considered as a function in the variable s ∈ C or equally as a
power series in p−s .

In [27] the following theorem is established.

Theorem 1.2. For � ∈ T the following hold.
(i) The Dirichlet series ζ ∗

�(s) converges in some right half-plane of C.
(ii) The Dirichlet series ζ ∗

�(s) decomposes as an Euler product

ζ ∗
�(s) =

∏
p

ζ ∗
�,p(s), (9)

where the product is to be taken over all primes p.
(iii) The power series ζ ∗

�,p(s) are rational functions in p−s . That is, for each
primep there are polynomialsZ∗

p, N∗
p ∈ Z[x] such that ζ ∗

�,p(s) = Z∗
p(p−s)/N∗

p(p−s)

holds. The polynomials Z∗
p, N∗

p can be chosen to have bounded degree as p varies.

An explicit determination of the local Euler factors (that is of the polynomials
Z∗

p, N∗
p ) of the zeta functions has been carried out in many cases including infinite

families of examples. The methods range from ingenious elementary arguments to
the use of algebraic geometry (resolving singularities). In several cases computer
assistance was used (see [51]). See Section 6 for a selection of these examples. The
database [52] collects comprehensive information on many examples treated so far.
In very few cases the zeta function could be described by a closed formula in terms
of the Riemann zeta function like in (6) or (7).

Note that, as a consequence of Theorem 1.2, the series (2), (3) and (5) converge
to holomorphic functions in some right half-plane of C. In fact the coefficients in (2),
(3) and (5) are non-negative, hence by a well known theorem of E. Landau there is
α ∈ R ∪ {−∞} such that the series in question converges (absolutely and locally
uniformly) for s ∈ C with Re(s) > α and diverges if Re(s) < α. This α is called the
abscissa of convergence of the series.

We wish to report the following theorem which collects together the main results
of [13].

Theorem 1.3. For � ∈ T the following hold.
(i) The abscissa of convergence α∗

� of ζ ∗
�(s) is a rational number.

(ii) There is a δ > 0 such that ζ ∗
�(s) can be meromorphically continued to the

region { s ∈ C | Re(s) > α∗
� − δ }.

(iii) The line { s ∈ C | Re(s) = α∗
� } contains at most one pole of ζ ∗

�(s) (at the
point s = α∗

�).
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We define b∗
� to be the order of the pole of ζ ∗

�(s) in s = α∗
�. Using another theorem

of E. Landau we find b∗
� ≥ 1. Theorem 1.3 has as an immediate consequence:

Corollary 1.1. Let � be in T . Let

s∗
�(N) :=

N∑
n=1

a∗
�(n) (N ∈ N) (10)

be the summatory function of the counting function a∗
�. We have

s∗
�(N) ∼ c∗

�Nα∗
� log(N)b

∗
�−1 (11)

with c∗
� ∈ R.

The formula (11) means that the right hand side divided by the left hand side tends
to 1 as N tends to infinity. The corollary follows from Theorem 1.3 using Tauber
theory (see [38]). Note that the third property of the zeta function is essential for this
application. Note also that c∗

� is equal to the lowest coefficient of the Laurent series
representing ζ ∗

� near the pole in s = α∗
�.

Having defined the new invariants α∗
� ∈ Q, b∗

� ∈ N and c∗
� ∈ R for every � in T

we are lead to

Problem 1.1. Relate α∗
�, b∗

�, c∗
� ∈ R to structural properties of �.

This problem is solved when � is the ring of integers of a number field for the ideal
zeta function. In this case α�

� = b�
� = 1 and the value of c�

� is given by Dirichlet’s
class number formula (see [32]). In the general case we have only the very scarce
information reported in later sections. The following asymptotic relations can be read
off from formulas (6) and (7), they reveal the values of our invariants.

s<

H3
(N) ∼ ζ(2)2

2ζ(3)
N2 log(N), s<

sl2(Z)(N) ∼ 20ζ(2)2ζ(3)

31ζ(5)
N2 (12)

The examples above illustrate that α∗
� can often be any natural number. However

examples described in Section 6 show that 5/2 and 7/2 are also possible values
of α∗

�. Considering Zd (d ∈ N) as a ring we have ζ �
Zd (s) = ζ(s)d and hence b�

Zd = d.
Examples from Section 6 illustrate that b∗

� can take the values 1, 2, 3, 4. In fact, the
Heisenberg group H3 has b<

H3
= 2. This is most of the knowledge we so far have on

Problem 1.2. What is the range of the pairs (α∗
�, b∗

�) as � varies over T ?

Problem 1.2 has many more concrete variants, let us mention one of them. Define
S∗

group := { α∗
G } ⊂ R to be the set of abscissas of convergence of the subgroup or

normal subgroup zeta functions as G varies over all finitely generated torsion-free
nilpotent groups. Define S∗

ring := { α∗
R } ⊂ R similarly as R varies over all rings in T .

Let us briefly explain the proof of
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Proposition 1.1. The set S<
group ⊂ R is discrete, that is below any real number there

are only finitely many members of S<
group.

Let G be a torsion-free nilpotent group and Gab its abelianisation. Let h(G) be the
Hirsch-length of G, that is the maximal number of infinite cyclic factors appearing in
a composition series of G. A simple argument shows h(Gab) ≤ α∗

G ≤ h(G). These
two inequalities have been improved in several directions (see [27] and [42]). An
unpublished result of D. Segal gives the lower bound

(
3 − √

2
)
h(G) − 1

2
≤ α<

G. (13)

The main result of [4] implies that once we fix the Hirsch-length of G there is a
universal denominator which all denominators of local zeta functions of nilpotent
groups of that Hirsch-length have to divide. The results of Sections 2 and 3 together
with (13) prove Proposition 1.1. The results of [4] apply also to the normal subgroup
zeta function and to the zeta functions of rings, but a replacement for (13) has not
been found. So we raise

Problem 1.3. Are the sets S�
group, S<

ring and S�
ring discrete? If not, what are their

accumulation points?

Are �1, �2 ∈ T isomorphic if their zeta functions agree? Questions of this
nature are traditionally called isospectrality problems. Examples of non-isomorphic
rings of integers R1, R2 in number fields with ζ �

R1
(s) = ζ �

R2
(s) are contained in [44].

The two finitely generated nilpotent groups (of class 2) G1, G2 described in Exam-
ple 4 of Section 6 are not isomorphic but have isomorphic profinite completions.
Hence ζ <

G1
(s) = ζ <

G2
(s), ζ �

G1
(s) = ζ �

G2
(s) both hold. These examples show that the

isospectrality problem in general has a negative answer. But there remains:

Problem 1.4. Suppose that ζ ∗
�1

(s) = ζ ∗
�2

(s) holds for both or at least one of the
possibilities ∗ ∈ { <, � } for �1, �2 ∈ T . Which structural invariants of �1 and �2
are the same? For example, are the profinite completions of �1 and �2 isomorphic?

For a more extensive discussion of isospectrality problems see [12]. This paper
also contains an example of a group G which satisfies ζ <

G(s) = ζ <

Z2 but which does
not have the same profinite completion as Z2. The group G is one of the plane
crystallographic groups, it has Z2 as a subgroup of index 2 but it is not nilpotent.

In this survey we mainly discuss properties of the zeta functions of groups and
rings. There are many topics not treated here, see [20] and [10] for relations to other
subjects. Connections to the by now vast field of subgroup growth are not treated
here. For this see the surveys [34] and [35].

In Sections 2, 3 we describe the proofs of Theorems 1.2 and 1.3. As a first
step the Euler factors ζ ∗

�,p(s) are described as certain p-adic integrals. These are
evaluated by the methods of p-adic integration. Having obtained explicit formulas
we multiply the (global) Euler product by an Artin L-function to enlarge its region of
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convergence. Section 4 discusses the variation with p of the Euler factors. Certain
functional equations of the Euler factors are the subject of Section 5. Section 6
contains examples. In Section 7 we describe variations on the zeta function theme.

2. p-adic formalism

While the proof of the first two items of Theorem 1.2 is elementary, the third requires
an expression for the local Euler factor ζ ∗

�,p(s) (p a prime) of the zeta function ζ ∗
�(s)

in terms of a certain p-adic integral. We shall briefly explain this procedure in the
case when � = R ∈ T is a ring and ∗ = �. For more details see [27] Section 3
or [13].

Let p be a prime. We write Qp for the field of p-adic numbers and Zp for its ring
of integers. For x ∈ Qp we define vp(x) to be the p-adic valuation of x and |x|p to
be the normalised p-adic absolute value. We write Trd(Z), Trd(Zp) (d ∈ N) for the
space of upper triangular d × d-matrices with entries in Z respectively Zp. We think

of Trd(Zp) being identified with Z
d(d+1)/2
p .

Let R ∈ T be a ring (with additive group isomorphic to Zd ) and p a prime. We fix
a Z-basis of R. Analysing the conditions for the rows of an upper triangular matrix
(in Trd(Z)) to be a triangular basis of an ideal in R, we find polynomials

f1, g1, . . . , fl, gl ∈ Z[x11, . . . , xdd ] (14)

such that

M�(R) := { x ∈ Trd(Z) | f1(x) || g1(x), . . . , fl(x) || gl(x) } (15)

is exactly the set of upper triangular matrices with entries in Z for which the rows
generate an ideal in R. Here we write a || b if the integer a divides the integer b. We
now use our Z-basis of R also as a Zp-basis of Zp ⊗Z R. We conclude that

M�(R, p) := { x ∈ Trd(Zp) | vp(fi(x)) ≤ vp(gi(x)) for i = 1, . . . , l } (16)

is exactly the set of upper triangular matrices with entries in Zp for which the rows
additively generate an ideal in Zp ⊗Z R.

The map a → a ∩ R sets up a one to one correspondence between the ideals of
index pn (n ∈ N) in Zp ⊗Z R and ideals of the same index in R. An exercise in p-adic
integration shows that

ζ �
R,p(s) = (1 − p−1)−d

∫
M�(R,p)

|x11|s−n
p |x22|s−n+1

p . . . |xdd |s−1
p dx (17)

holds for every primep withdx the normalised Haar measure on Trd(Zp) = Z
d(d+1)/2
p .

The same approach applies to the subring zeta function of a ring R ∈ T . See Section 3
of [27] or Section 5 of [13] for more details.
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A similar, slightly more elaborate, analysis yields polynomials (14) in d(d + 1)/2
variables such that formula (17) holds in case � = G is a finitely generated torsion-
free nilpotent group. For more details see Section 2 of [27] and Section 5 of [13].
Here, due to the use of Lie ring methods, finitely many primes have to be excluded.
The natural number d has to be taken to be the Hirsch-length of G.

The proof in [27] of the rationality of these p-adic integrals relied on observing that
M∗(�, p) are definable subsets in the language of fields. One can then apply a theorem
of Denef [1] which establishes the rationality of definable p-adic integrals. Denef’s
proof relies on an application of Macintyre’s quantifier elimination for the theory of
Qp which simplifies in a generally mysterious way the description of definable subsets
like M∗(�, p). In the next section we shall report on a concrete formula computing
integrals like (17) which replaces the use of the model theoretic black box in the proof
of the rationality.

3. p-adic and adelic cone integrals

We define here certain Euler products with factors given by p-adic integrals which
are generalized versions of the p-adic integrals occurring in formula (17). We then
analyze the analytical properties of these Euler products.

Let m be a natural number. A collection of polynomials

D = (f0, g0; f1, g1, . . . , fl, gl) (f0, g0, f1, g1, . . . , fl, gl ∈ Q[x1, . . . , xm]) (18)

is called cone integral data. We associate to D the following closed subset of Zm
p (p

a prime)

M(D, p) := { x ∈ Zm
p | vp(fi(x)) ≤ vp(gi(x)) for i = 1, . . . , l } (19)

and a p-adic integral with conventions as in Section 2:

ZD (s, p) =
∫

M(D,p)

|f0(x)|sp |g0(x)|p dx. (20)

Note that Section 2 shows that the local zeta functions of the � ∈ T are special cases of
the ZD (s, p). The p-adic integral (20) is easily seen to exist for s ∈ C with sufficiently
large real part. It can be expressed as a power series ZD (s) = ∑∞

i=0 ap,i p−is with
non-negative integer coefficients and ap,0 �= 0. In fact, a result of Denef [1] says that
the power series in (20) is rational in p−s . Given the cone integral data D we can
define ZD (s, p) for every prime p. We use this to define an Euler product

ZD (s) =
∏
p

(a−1
p,0 · ZD (s, p)) (21)

which we call the global or adelic cone integral. In fact, with appropriate normali-
sation of measures, ZD (s) can be defined as an adelic integral (see [39] for a special
case).
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Special cases of the p-adic integrals (20) appear in [28]. We use an adaptation of
a method to calculate p-adic integrals from [1] and [2] to show:

Proposition 3.1. Let D = (f0, g0; f1, g1, . . . , fl, gl) be cone integral data. Define
the polynomial F(x) := ∏l

i=0 fi(x)gi(x). Let (Y, h) be a resolution of singularities
over Q of F . Let Ei (i ∈ T ) be the irreducible components defined over Q of the
reduced scheme (h−1(D))red where D = Spec(Q[x]/F ). Then the following hold.

(i) There exist rational functions PI (X, Y ) ∈ Q(X, Y ) for each I ⊂ T with the
property that for almost all p:

ZD (s) =
∑
I⊂T

cp,I PI (p, p−s) (22)

where cp,I = |{a ∈ Ȳ (Fp) | a ∈ Ei if and only if i ∈ I }| and Ȳ is the reduction
mod p of the scheme Y .

(ii) There is a closed polyhedral cone C ⊂ Rt≥0 where t = |T | and a decomposition
of C into open simplicial pieces which we denote by Rk (k ∈ {0, 1, . . . , w}). We
arrange that R0 = (0, . . . , 0) and R1, . . . , Rq are the one-dimensional pieces. For
each k ∈ {0, 1, . . . , w} let Mk ⊂ {1, . . . , q} denote the one-dimensional pieces in the
closure of Rk . Then there are positive integers Aj , Bj for j ∈ {1, . . . , q} such that
for almost all primes p:

ZD (s) =
w∑

k=0

(p − 1)Ik p−m cp,Ik

∏
j∈Mk

p−(Aj s+Bj )

1 − p−(Aj s+Bj )
(23)

where Ik is the subset of T defined so that i ∈ T \Ik if and only if the i-th coordinate
is zero for all elements of Rk .

The study of p-adic integrals like (20) has been initiated by J. Igusa. His funda-
mental results are documented in [28]. The references in [28] provide access to the
vast literature on this subject. Previous to the results documented here the global or
adelic versions (21) have only received attention in special cases (see [39]). Using
various methods from analytic number theory and arithmetic geometry we show in
[13] that Proposition 3.1 implies:

Corollary 3.1. Let D = (f0, g0; f1, g1, . . . , fl, gl) be cone integral data. Suppose
ZD (s) is not the constant function.

(i) The abscissa of convergence α = αD of ZD (s) = ∑∞
n=1 ann

−s is a rational
number.

(ii) ZD (s) has a meromorphic continuation to Re(s) > α − δ for some δ > 0.

(iii) The line { s ∈ C | Re(s) = α� } contains only one pole of ζD (s) at s = α�.

In fact, we multiply ZD (s) by the Artin L-function corresponding to the permuta-
tion representation of the absolute Galois group of Q on the irreducible components
of the Ei (i ∈ T ) appearing in Proposition 3.1. Using the estimates of Hasse and
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Weil for the number of points on algebraic varieties over finite fields on the cp,Ik
in

formula (23) we can analyse the analytic properties of the product of ZD (s) with its
Artin L-function near the abscissa of convergence of ZD (s).

Theorem 1.3 is a consequence of this corollary together with the discussion in
Section 2.

Following classical analytic number theory it is natural to ask how far the adelic
cone integrals ZD (s) can be meromorphically continued to the left. The analysis of
special cases shows that often natural boundaries arise as one continues to the left
(see [11]). That is, in these cases, poles or zeroes of the continued function accumulate
densely to the points of a vertical line in C. Beyond this line no continuation is possible.
The following problems seem to be of interest.

Problem 3.1. Find all cone integral data D such that ζD (s) has a meromorphic
continuation to C, or at least give sufficient conditions for this to happen.

Problem 3.2. Find all � ∈ T such that ζ�(s) has a meromorphic continuation to C,
or at least give sufficient conditions for this to happen.

Problem 3.3. Show that either ζD (s) has a meromorphic continuation to C or that
there is some rational number βD such that the line { s ∈ C | Re(s) = β� } is a natural
boundary.

In [14] and [16] we attempt, partially successfully, to replace the zeta function
by a ghost zeta function which has more amenable analytic properties but which has
Euler factors which are in a specific sense near to those of the original zeta function.

The process of continuation to the left ties up the Dirichlet series ζD (s) with the
zeta functions defined by A. Weil and R. Langlands for smooth Q-defined projective
algebraic varieties. Let us report on a special example. Let y2−x3−ax−b (a, b ∈ Q)
be a polynomial representing an elliptic curve E. Define

ZE,p(s) :=
∫

Z2
p

|y2 − x3 − ax − b|sp dx, ZE(s) :=
∏
p

(λ−1
p ZE,p(s)) (24)

with appropriate normalisation factors λp. We have shown in [17] that the Dirichlet
series ZE(s) converges for Re(s) > 0. Moreover when attempting to continue ZE(s)

to the left, the symmetric power L-functions attached to E arise. It is conjectured that
these symmetric power L-functions can all be meromorphically continued to C.1 If
this is true then ZE(s) can be meromorphically continued to the region Re(s) > −3/2.
Results of J. P. Serre concerning the Sato–Tate conjecture for E then imply that the
line Re(s) = −3/2 is a natural boundary beyond which no continuation is possible.

1Note added in proof: these conjectures have recently been proved.
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4. The local factors: variation with p

The behaviour of the local factors as we vary p is one of the other major problems in
the field. If we consider formula (6) we easily see that

ζH3,p(s) = W1(p, p−s)

W2(p, p−s)
(25)

where W1, W2 can be given without reference to the prime p as polynomials
W1(X, Y ) = (1 − Y )(1 − XY)(1 − X2Y 2)(1 − X3Y 2), W2(X, Y ) = 1 − X3Y 3.
Groups with this property are said to have uniform subgroup or normal subgroup
growth. In [27] it is proved that a finitely generated free nilpotent group of class 2
has both uniform subgroup and normal subgroup growth. As revealed in [7] the fol-
lowing problem ties up intimately with classification problems of finite p-groups, in
particular with Higman’s PORC-conjecture.

Problem 4.1. Show that every finitely generated free nilpotent group has both uniform
subgroup and normal subgroup growth.

We can also consider a similar variety of problems for rings. We define uniform
subring or ideal growth as above in the group case and raise

Problem 4.2. Show that the following Lie rings have uniform subring and ideal
growth.

• Free nilpotent Lie rings of finite Z-rank,

• sln(Z) (n ∈ N) or any other integer version of a simple Lie algebra over C.

Let us now consider the Heisenberg group H3 with entries from the ring of integers
of a quadratic number field. The behaviour of the local factors of its zeta functions
depends on how p behaves in the number field [27]. That is formulas like (25) hold,
but finitely many pairs of polynomials are needed to describe the variation of the local
factor of the zeta function with p. Groups with this property are said to have finitely
uniform subgroup or normal subgroup growth. There is a similar concept in the case
of rings.

For a long time this was the only type of variation with p which was known.
Our explicit formula however takes the subject away from the behaviour of primes
in number fields to the problem of counting points modulo p on a variety, a question
which is in general wild and far from the uniformity predicted by all previous examples
seen in [27]. Two papers [8] and [9] by the first author contain the following example
of a class two nilpotent group of Hirsch length 9 whose zeta function depends on
counting points mod p on the elliptic curve y2 = x3 − x. Define

G =
〈
x1, x2, x3, x4, x5, x6,

y1, y2, y3

[x1, x4] = y3, [x1, x5] = y1, [x1, x6] = y2,

[x2, x4] = y2, [x2, x6] = y1, [x3, x4] = y1,

[x3, x5] = y3

〉
(26)
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with the convention that commutators not mentioned are equal to 1. By [9] there exist
rational functions P1(X, Y ), P2(X, Y ) ∈ Q(X, Y ) such that for almost all primes p

ζ �
G,p(s) = P1(p, p−s) + |E(Fp)|P2(p, p−s), (27)

where E is the elliptic curve y2 = x3 −x. In [9] this formula is used to show that G is
not finitely uniform. To see where the elliptic curve is hidden in the above presentation,
take the determinant of the 3 × 3 matrix (aij ) with entries aij = [xi, xj+3] and you
will get the projective version of E.

Formula (23) shows that the variation type with p of the Euler factors ζD,p(s)

(D cone condition data) is that of functions counting points on a Q-defined algebraic
variety modulo primes p. But might their be further restrictions once we consider the
Euler factors ζ�,p(s) for � ∈ T ?

Problem 4.3. Let V be a Q-defined algebraic variety. Is there �V ∈ T such that
there are rational functions P1(X, Y ), P2(X, Y ) ∈ Q(X, Y ) such that for almost all
primes p

ζ�V ,p(s) = P1(p, p−s) + |V (Fp)|P2(p, p−s) (28)

holds?

The consideration of zeta functions obtained by motivic integration (see [18])
sheds some light on this new dialogue between groups and rings and questions of
arithmetic geometry.

5. Functional equations of the local factors

There is another remarkable feature of many of the rational functions representing the
local zeta function of nilpotent groups: they satisfy a certain palindromic symmetry.
Let us explain this in the case of the normal subgroup zeta function of F2,3, the free
nilpotent group of class two on three generators. The group F2,3 is torsion-free and
has Hirsch-length 6. From [27] we know that

ζ �
F2,3,p

(s) = 1 + X3Y 3 + X4Y 3 + X6Y 5 + X7Y 5 + X10Y 8

(1 − Y )(1 − XY)(1 − X2Y )(1 − X8Y 5)(1 − X6Y 9)

∣∣∣∣
X=p, Y=p−s

(29)
holds for every prime p. Let us replace p by p−1 (and p−s by ps) in this expression.
Indicating this replacement by p → p−1, we find:

ζ �
F2,3,p

(s)|p→p−1 = p15−9sζ �
F2,3,p

(s). (30)

This phenomenon was found in all examples of all finitely generated nilpotent groups
of class 2 and Lie rings of nilpotency class 2 where explicit computations have been
done. We pose here the
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Problem 5.1. Let G be a nilpotent group of class 2 and Hirsch-length h. Assume that
the quotient of G modulo its center (which is abelian) has torsion-free rank m. Show
that

ζ<
G,p(s)|p→p−1 = (−1)d p

h(h−1)
2 −hs ζ<

G,p(s), (31)

ζ �
G,p(s)|p→p−1 = (−1)d p

h(h−1)
2 −(h+m)s ζ �

G,p(s) (32)

hold for almost all primes p.

In [48] C. Voll is able to answer Problem 5.1 affirmatively for the special case
of local zeta functions counting normal subgroups of torsion-free class 2 nilpotent
groups which have a centre of Z-rank 2 by giving explicit formulas for the local
zeta functions in this case. C. Voll [49] and P. Paajanen [40], [43] and [41] have
also confirmed the functional equation for the normal subgroup zeta function in more
general settings by analysing the geometry of the Pfaffian hypersurface associated to
presentations of class 2 nilpotent groups. Note however that the functional equation
for zeta functions of nilpotent groups is not a completely general phenomenon. The
Lie ring LW introduced in Example 3 of the next section has nilpotency class 3. The
Euler factors of the ideal counting zeta function do not satisfy a functional equation,
although the Euler factors of the subring zeta function do have such a symmetry.

Problem 5.1 should be seen in connection with a result of Denef and Meuser [2]
who prove that the rational expression (in p−s) corresponding to the Igusa-type p-adic
integral

Z{g0, 1},p(s) :=
∫

Zm

|g0(x)|sp dx (33)

satisfy a functional equation if g0 ∈ Zp[x1, . . . , xm] is absolutely irreducible and
defines a smooth projective hypersurface over the finite field Fp. A key role in their
proof is played by the functional equation satisfied by the algebraic geometric zeta
function for this hypersurface proved by A. Weil.

In [48] C. Voll uses the functional equation for the local zeta functions of elliptic
curves to prove that the zeta function (27) of the nilpotent group encoding an elliptic
curve in its presentation has a functional equation of the type predicted by (31).
The paper [31] of B. Klopsch and C. Voll treats interesting new counting problems
related to orthogonal and unitary groups over finite fields which arose in the study of
functional equations.

The only counterexamples to the functional equations for zeta functions of groups
and rings relate to counting normal subgroups in groups or ideals in rings. We therefore
raise the following:

Problem 5.2. Let � be in T . Show that there are rational numbers a, b and c such
that

ζ<
�,p(s)|p→p−1 = (−1)c pas+b ζ<

�,p(s) (34)

for almost all primes p.
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In his thesis [51] L. Woodward analyses a general setting in which certain cone
integrals are conjectured to have functional equations which could generalise the
result of Denef and Meuser. The cone integral data has to satisfy what Woodward
calls a homogeneity condition, namely deg(gi) = deg(fi) + 1 for i = 1, . . . , l. The
cone integrals describing zeta functions counting all subgroups or subrings satisfy this
homogeneity condition in contrast to the normal subgroup and ideal zeta functions.
Using results of Stanley on functional equations of polyhedral cones Woodward can
prove the functional equation in the special case that all the polynomials of the cone
integral data are monomials.

6. Examples

This section contains a brief description of the information obtained so far on the zeta
functions of several series of Lie rings. We also describe the pair of finitely generated
nilpotent groups which solves the isospectrality problem negatively.

Example 1. Let F(2, n) be the free nilpotent Lie ring of class two on n ∈ N (n ≥ 2)
generators. This Lie ring has Z-rank h(n) = n+n(n+1)/2. Note that the Lie ring of
the Heisenberg group H3 is isomorphic to F(2, 2). An explicit formula for the Euler
factors of the ideal zeta function is given by C. Voll in [48] (see [40] for special cases).
From these

α�
F(2,n) = max

{
n,

(
n(n−1)

2 − j
)
(n + j) + 1

h(n) − j

∣∣∣ j = 1, . . . ,
n(n − 1)

2
− 1

}
(35)

can be deduced. This formula shows that for n ≥ 5, the abscissa of convergence of
the global ideal zeta function is greater than n and is usually not an integer. However,
sometimes it may just happen to be an integer. The only n in the range 5 ≤ n ≤ 200
for which this happens is n = 26. Furthermore the ideal growth of F(2, n) is uniform
and the Euler factors ζF(2,n),p satisfy the functional equation of Problem 5.1 (see
[50]).

Example 2. Let n be a natural number with n ≥ 2. Define G(n) to be the Lie ring

G(n) := 〈 z, x1, . . . , xn−1, y1, . . . , yn−1 | [z, xi] = yi (i = 1, . . . , n − 1) 〉. (36)

Our convention again is that all commutators between the generators not mentioned
are equal to 0. Hence G(n) has nilpotency class two and Z-rank 2n − 1. D. Gren-
ham [22] has determined explicit formulas for the ideal zeta functions of G(n) for
n = 2, 3, 4, 5. Let us report his formula in case n = 4. Define W4(X, Y ) to be the
rational function

W4(X, Y ) := 1 + X4Y 3 + X5Y 3 + X8Y 5 + X9Y 5 + X18Y 8

(1 − Y )(1 − XY)(1 − X2Y )(1 − X3Y )(1 − X6Y 3)(1 − X10Y 5)
.

(37)
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Grenham’s formula reads as

ζ �
G(4),p(s) = W4(X, Y )|X=p, Y=p−s . (38)

From this it is immediately clear that G(4) has uniform ideal growth. Also α�
G(4)

= 4
and b�

G(4)
= 1 can be read off. Further analysis of the numerator in (37) shows that

the global zeta function ζ �
G(4)

(s) has a natural boundary at Re(s) = 9/5 (see [11]).
Using methods of algebraic geometry C. Voll [49] has developed a closed formula

for ζ �
G(n),p

(s) which holds for every n ≥ 2 and every prime p. This formula shows
that G(n) has uniform ideal growth for every n ≥ 2, it also confirms the conjectures
from Section 5 concerning functional equations of the Euler factors. Also, for n ≥ 6
the abscissa of convergence α�

G(n)
is greater than n, and it is in general not an integer.

Indeed, if 6 ≤ n ≤ 200, the abscissa of convergence is an integer if and only if
n = 2N2 + 6N + 5 for some integer N .

D. Grenham [22] has also studied the subring zeta function of G(n). We cite
from [22] the following pole orders:

b<

G(3) = 2, b<

G(4) = 2, b<

G(5) = 3. (39)

The corresponding abscissas of convergence are

α<

G(3) = 3, α<

G(4) = 4, α<

G(5) = 5. (40)

Example 3. The following example of a Lie ring played an important role in the
development of the conjectures from Section 5 concerning functional equations of
the Euler factors. Define

LW := 〈 z, w1, w2, x1, x2, y | [z, w1] = x1, [z, w2] = x2, [z, x1] = y 〉. (41)

This Lie ring has nilpotency class 3 and Z-rank 6. It was discovered and extensively
studied by L. Woodward in [51]. The Lie ring LW has uniform subring and ideal
growth but only the local subring counting zeta function satisfies a functional equation.
We further report from [51]:

α<

LW
= 3, b<

LW
= 4, α�

LW
= 3, b�

LW
= 1. (42)

The global zeta function ζ <

LW
(s) has a natural boundary at Re(s) = 17/7 whereas

ζ �
LW

(s) has a natural boundary at Re(s) = 7/6.

Example 4. In [23] it is proved that the following two finitely generated nilpotent
groups

G1 =
〈

g1, g2, g3, g4,

z1, z2

[g1, g2] = 1, [g3, g4] = 1, [g1, g3] = z1,

[g1, g4] = z2, [g2, g3] = z2, [g2, g4] = z−5
1

〉
, (43)

G2 =
〈

g1, g2, g3, g4,

z1, z2

[g1, g2] = 1, [g3, g4] = 1, [g1, g3] = z1,

[g1, g4] = z2, [g2, g3] = z−1
1 z2

2, [g2, g4] = z−3
1 z2

〉
(44)
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have the same profinite completion but are not isomorphic. It follows that both their
zeta functions are the same. Both groups have Hirsch-length equal to 6 and are of
nilpotency class 2. These groups come as special cases of an infinite series of l-tuples
(l ≥ 2) of examples of such groups arising from a number theoretic setting.

7. Variation

We have put the emphasis on counting subgroups or normal subgroups in nilpotent
groups and on counting subrings or ideals in rings, however our results extend in a
number of other directions.

(1) Variants of our zeta functions have been considered which count only sub-
groups with some added feature, for example characteristic subgroups or subgroups
of a finitely generated torsion-free nilpotent group G which are isomorphic to G.
Theorems 1.2 and 1.3 hold in this case and for many of these variants. In fact, there
is always a p-adic formalism like in Section 2 which reduces Theorem 1.3 to Corol-
lary 3.1 (see [27]). The paper [19] relates the zeta functions counting subgroups of G

which are isomorphic to G to zeta functions defined by A. Weil for Q-defined linear
algebraic groups.

(2) The rationality result of Theorem 1.2 also holds for finitely generated nilpotent
groups which are not necessarily torsion-free. In fact, the first author proved in [3]
that this result extends to all finitely generated soluble groups of finite rank.

(3) In [12] it is proved that all crystallographic groups or more generally all finitely
generated groups which contain an abelian subgroup of finite index have zeta functions
which have a meromorphic continuation to all of C. This is done by relating these
zeta functions to zeta functions of orders in central simple Q-algebras.

(4) The local zeta functions of the classical groups (see [14], [13]) can be expressed
as p-adic cone integrals and our results apply to the corresponding Euler product.

(5) Let g(n, c, d) be the number of finite nilpotent groups of size n, of nilpotency
class bounded by c and generated by at most d elements. In [7] the zeta function

ζN (c,d)(s) :=
∞∑

n=1

g(n, c, d)n−s (45)

is shown to be expressible as the Euler product of p-adic cone integrals. Hence our
results apply and give asymptotic results for the partial sums of the g(n, c, d). The
formalism of zeta functions has been applied successfully in [7] to solve conjec-
ture P, which had appeared in connection with periodicity in trees connected with the
classification problem for finite p-groups in terms of coclass.

(6) Thinking of Hilbert’s basis theorem we might expect a connection between the
ideal counting zeta function of a ring R and that of the polynomial ring R[x] over R.
This expectation is confirmed by a beautiful formula of D. Segal [45] which holds for
Dedekind rings R.
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(7) The formalism of zeta functions has been used to count representations of
arithmetic and p-adic analytic groups in the papers [37] of B. Martin and A. Lubotzky,
[30] of A. Jaikin-Zapirain and [33] of M. Larsen and A. Lubotzky.
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