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1. Introduction

We shall explain how to use zeta functions of groups to generate a hierarchy within
the class of finitely generated nilpotent groups indexed by certain subrings of the Gro-
thendieck ring of varieties.

The zeta function of a group was introduced by Grunewald, Segal and Smith in [7]

to provide a new invariant for a finitely generated nilpotent group G. It is defined as a
Dirichlet series encoding the number a=(G) of all subgroups of index n in G:

a=(G)n.

B

(G = Y |G H|" =

H<G

3
I

They also defined the normal zeta function of G:

) = Y16 H " = 3 al(G)n
H«G n=1

where the coefficients a;(G) of the Dirichlet series record the number of normal subgroups
of index n in G. The expression as a sum over subgroups suggests that this is a natural non-

commutative generalization of the zeta function of a number field.

These zeta functions decompose as Euler products of local factors: for x € {<, <}

L) = 11 &6,09)

p prime

where

(o pls) = é an(G)p .
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2 Sautoy, Subgroups in nilpotent groups

The local factors were proved in [7] to be rational functions in p~*. One of the major
open problems raised in [7] was the dependence on p of these local factors. The authors
speculated that the analogy with the zeta function of a number field might imply a finitely
uniform description for these local factors.

This was clarified in recent work with Grunewald [4]. We show that it is the Weil zeta
function counting points on varieties mod p on varieties which offers the better analogy
rather than the zeta function of a number field. It is this recent work together with work of
myself and Loeser [5] on the concept of an associated motivic zeta function which reveals a
path from nilpotent groups to subrings of the Grothendieck ring of algebraic varieties.

In [4] we have provided an explicit formula for these local factors which depends on
counting points mod p on an explicit system of subvarieties E; (i € 7', T finite) of a variety YV
defined over Z: for each subset 7 of T there exists a rational function W;(X,Y) e Q(X,Y)
such that for almost all primes p

(L.1) (e p(8) = IZTCI(P) Wi(p,p~)
where
(1.2) ci(p) =card{a e Y(F,): a € E;(F,) if and only if i € I'}.

The varieties E; are the irreducible components corresponding to a resolution of sin-
gularities of a polynomial F;(X) defined from a presentation for G (or rather its associated
Lie algebra L).

To attach some subring of the Grothendieck ring to the nilpotent group G, the idea is
to look at the ring generated by the varieties that we need to count points on mod p to get
an explicit expression like (1.1). However, this expression involves many choices: a choice
of a presentation for G, a choice of a resolution of singularities, and a choice of simplicial
decomposition of an associated cone in which we count lattice points. Not only that, but
non-isomorphic varieties can have the same number of points mod p. So on its own the
explicit expression derived in [4] is not enough to attach in some well-defined manner some
subring of the Grothendieck ring to G. It is the concept of an associated motivic zeta func-
tion attached to these zeta functions which allows one to canonically associate a subring of
the Grothendieck ring to G. This motivic zeta function takes its values in the Grothendieck
ring and by “‘taking the trace of Frobenius” of the motivic zeta function one recovers the
original zeta functions {; ,(s). The motivic zeta function is however independent of a pre-
sentation and resolution. Hence the subring generated by the coefficients of the zeta func-
tion is canonically associated to the group G.

Despite this theoretical work it was unclear what sort of varieties could possibly ap-
pear in expressions for { ;; p(s). Indeed the speculations in the original paper of Grunewald,
Segal and Smith [7] implied that it was plausible that one only got varieties whose number
of points mod p were finitely uniform (i.e. given by a polynomial in p depending on some
finite partition of primes), e.g. rational varieties or Artin motives. So all nilpotent groups
would sit at the bottom of the hierarchy we are proposing.

In this paper we present examples which show that these zeta functions contain in
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Sautoy, Subgroups in nilpotent groups 3

general a much richer algebraic geometry than simply rational varieties. In particular we
prove

Theorem 1.1.  For each elliptic curve E = y* + x> — Dx, define a nilpotent group G(E)
by the following presentation:

G(E) _ <XI,X2,X3,x4axsax6,J’1,J/2vJ731 [X],X4] :y%Da [X],XS] :J’17[x17x6] —J’27>
[X2, x4] = 1, [X2, X5] = 3, [X3, X4] = 2, [X3, X6] = )1

Then there exist two rational functions P\(X,Y) and P(X,Y) € Q(X, Y) such that for al-
most all primes p:

(o p(8) = Pi(p,p~") + |E(F,)|P2(p,p™°).

A corollary to results proved in a previous paper [3] in the case of D = 1 implies that
the rational functions P (X, Y) and P,(X, Y) are non-zero, i.e. that one can’t avoid counting
points on the elliptic curve E. The proof depends on counting the number of normal sub-
groups of index p> and can easily be adapted to prove the same result for general D.

In section 5 we shall explain the concept of the associated motivic zeta function de-
veloped in [5] which will imply the following:

Corollary 1.2.  The curve E is canonically attached to the nilpotent group G(E).

The methods developed in this paper offer the hope to show that nilpotent groups can
involve arbitrary varieties. However there is one class of groups of which it is still con-
jectured that the associated varieties are all rational, namely free nilpotent groups (see [7]).
This conjecture has been demonstrated to have more significance than first realised. In [1]
and [2] it is explained why this conjecture relates to Higman’s PORC conjecture that the
number f(p,n) of p-groups of order p” is given, for each fixed n, by polynomials in p de-
pending only on the residue class of p modulo some fixed integer N,,.

Acknowledgements. 1 would like to thank the Royal Society for support in the form
of a University Research Fellowship. I would also like to thank the Max Planck Institut in
Bonn where the group G(E) flashed into my head one evening and for invaluable conversa-
tions with Fritz Grunewald during my time at the MPI. Thanks are also due to my Ph.D.
student Christopher Voll who corrected a number of errors in the original manuscript.

2. Nilpotent groups and elliptic curves

Let L(E) be the class two nilpotent Lie algebra over Z of dimension 9 as a free
Z-module given by the following presentation:

L(E) = <X1,x2,x3,x4,x5,X67y1,y2,y33 (x1,x4) = Dys, (x1,x5) = y1, (X1, X6) :y2,>
(x2,x4) = 1, (X2, X5) = p3, (X3, X4) = 2, (X3, X6) = »1

where all other commutators are defined to be 0. Then L(E) ® Q is the Q-Lie algebra as-
sociated to the torsion-free finitely generated nilpotent group G(E) under the Mal’cev cor-
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4 Sautoy, Subgroups in nilpotent groups

respondence. We can define the ideal zeta function associated to L(E) similarly to the
normal zeta function associated to G(E):

5y (8) = i a (L(E)) p

where a;, (L) is the number of ideals of L of index p”. Section 4 of [7] confirms the following:

Proposition 2.1. For almost all primes p,

Cg(E),p(S) = CZ(E>,p(S)-
It therefore suffices to prove:

Theorem 2.2. There exist two rational functions Pi(X,Y) and P,(X,Y) e Q(X,Y)
such that for p coprime to 2D:

(i) p(8) = Pu(pp™) + [E(F,) [ P2(p:p™)

We begin by recalling something of the proof of (1.1) in [4] which will motivate the
direction for the proof of Theorem 2.2. The proof of this explicit formula breaks up into a
number of stages:

(1) We show how to express (jg ,(s) as something we call a cone integral.
Cone integrals are defined for a set of cone integral data consisting of polynomials

9 = {f0<x)790(x>7 s ,f;(x),g;(x)} by

Zg(s,p) = V(fg) [fo(x)"lgo(x)] |dx]

where
V,(2)={xe€ Z," v(fi(x)) < v(gi(x)) fori=1,...,1}

and |dx| is the additive Haar measure on Z'. The cone integrals in the case of counting
ideals in a Lie algebra L of dimension d are defined as follows: let C; = (cix(j)) be the

d
d x d matrix defined by (e;,¢;) = > ci(j)ex. Let M = (m;;) be an upper triangular matrix
k=1
whose rows we shall call m; and denote by M the adjoint matrix. Then define polynomials
g;k (mys) in the entries of this triangular matrix to be the kth entry of the d-tuple m;C; M f,
The cone conditions defining CZ ,(s) are given then by

1, (2) = {x € Z[’,”: o(myy - mgg) < v(g;k(mm)) fori, jk=1,.. .,d}

and (] » (s) can be expressed in terms of the associated cone integral by

G =0=p ) [ g mag ™ mi e ma_ya | dx].
H(2)
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Sautoy, Subgroups in nilpotent groups 5

(2) If the polynomials involved in the cone integrals are all monomial then the cal-
culation reduces to a discrete problem about summing lattice points representing the valu-
ations of the variables m;; satisfying various linear inequalities. We explain in the next
step why this is uniform in p. But in general the polynomials g;?k(mm) are far from mono-
mial. To overcome this problem we do a resolution of singularities on the polynomial
FL(M)=my - -mgq [] g;k (mys) which results in a partition of the resolved space into re-

gions on which the p}])'lynomial F;(M) now becomes monomial. The partitioning of this
space naturally leads to the problem of counting points on the associated irreducible com-
ponents E; (i € T') of the resolution of singularities of F;(M). This is the only place where
the evaluation of this integral depends in some essential way on p. Apart from throwing
away finitely many primes at various points (e.g. where the resolution has bad reduction)
the integral is uniform outside this partitioning.

(3) This reduces our integral to a finite sum > ¢;(p)Z(s), where the coefficients

IcT
¢/(p) defined in (1.2) capture the essential dependence on p, and the Z,(s) are cone in-
tegrals with respect to monomial polynomials of the following shape:

Zi(s) = J ||y et
W)

dy|

where I = {i},...,i,} and

V(D) = {y € (pZ,)": v(|p1|% -+ |9 %) < o|ya | -+ || ") for j=1,...,1}.

These in turn can be expressed as a sum over lattice points n = (ny, ..., n,) corresponding
to the valuations n; = v(y;):

Z[(S) — (1 _p—l)rpm—r ZA(p—(ao,»] s+bo,-l+1)n1—-~—(a0,-,.s+b0,»,+1)n,)
ne

where
A={neNlyasn +---+azn <byn +---+byn forj=1,... 1}

The evaluation of Z;(s) is therefore independent of p thanks to the following propo-
sition contained in [4] which we shall use later on in this paper:

Proposition 2.3.  Suppose there exists a finite partition | ) ©; of RY defined by linear
ieS
inequalities with coefficients over Q and for each i € S linear functions «;(x) and f,(x) defined
over Q . Then there exist rational functions H;(X,Y) € Q(X, Y) such that for each i € S

S pmse ) — gy (pp).

neNdr\('D,

These geometric progressions can be calculated by decomposing each cone ®; defined
by the linear inequalities into open simplicial cones with fundamental regions of volume 1.
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6 Sautoy, Subgroups in nilpotent groups

Our strategy in proving Theorem 2.2 is that once we have established the shape of the
cone integrals depending on the presentation of L(E), we shall perform a direct analysis to
partition our integral according to points on the elliptic curve such that the individual in-
tegrals reduce to sums of lattice points of the shape detailed in Proposition 2.3.

Our direct analysis calculates the integral by parts exploiting the fact that in a class
two nilpotent Lie algebra, the algebra splits into two abelian sections. We first integrate the
‘top’, the abelianisation, with respect to some fixed choice of basis for the centre. We then
integrate the ‘bottom’, the centre, with respect to the functions introduced in the evalua-
tion of the top. The analysis avoids the direct application of a resolution of singularities
although there is in fact a hidden blow-up at the heart of some of the case analysis in con-
sidering the integral of the bottom.

Note that the analysis could be carried through to its ultimate conclusion resulting in
an explicit evaluation of the zeta function. However the analysis in (3) involving a sim-
plicial decomposition of cones C, although uniform in p, results in general in a very com-
plicated case analysis. Since this paper has its focus in the dependence on p of these local
factors, we have chosen to subsume these complications under the umbrella of a uniform
calculation.

Proof of Theorem 2.2. Let

c(l) =

S = O
)

C(2) =

oS O O

(e}

C(3) =

SO0 o ©O— 2 ool

- o O oS O =
—

Then for i, j = 1,2,3 we have

(xi,Xj13) = Ca(/)y1 + Ca(j)y2 + Ci3(f)y3
= Ci(D)y1 + Cp(i)y2 + Ci(i)ys.

From the analysis described above in (1) from [4] we can express the zeta function
Cz( E), p(s) for all primes p by the following cone integral:

21) Gy, =0 =p ™7 [lmn " mg|* Ol | Imal* s ]* | dim] ||

7

where dm and dn are additive Haar measures on Tre(Z,) and Tr3(Z,) respectively and ¥},
consists of all pairs of matrices
Brought to you by | Sackler Library

Authenticated | 129.67.119.180
Download Date | 9/3/12 5:03 PM



Sautoy, Subgroups in nilpotent groups 7

n a b
(M,N)=|(mz),[ 0 m ¢ € Tre(Z,) x Tr3(Z,)
0 0 n3

satisfying: fori=1,...,6,e =0 or 3 and j = 1,2, 3 there exists (/llfg“,/lléﬂ, i£+3) € Z; such
that

(2.2) (M1, Mig2, mici3) C(HINT = (A, ymamans, 2, ,mmans, 24, sminans)
where N1 is the adjoint matrix

nony  —ans  ac — nmb
Nt = 0 nsn —cny
0 0 niny

The integral (2.1) is the same as the sum:

p e p MmO m DM (M, Mg, N1, N2, N3)

Mi,....Me,N1,N2, N3N

where u(M, ..., Mg, N1, N2, N3) is the measure of the set of ((ml])

a,b,c) satisfying
2.2) with mj; replaced by p™: and n; replaced by p™.
g

i<j

3. Integrating by parts: the top

We look to establish an expression for u(M, ..., Mg, N1, N2, N3) by calculating the
measure modulo the matrix for the centre N. We integrate by parts by performing the in-
tegration on the matrix for the abelianisation. It will suffice by symmetry to calculate values
for the following functions: for each M| and

Neog b

(1) Zi(My,N) = w(W1) where W; consists of (my,ms) er such that for each
j=1,2,3 there exists (1], 43,43) € Z]‘j’

(3.1) (M ma,m3) C(NT = (2 pMtNeehis gy phiehaehis 2 pRiehasiy,

(2) Zy(M>,N) = u(W>) where W, consists of m3 € Z, such that for each j =1,2,3
there exists (4], 43, 43) € Z;

(32) (0,]7M2, YYZ})C(])NT _ (l{pN1+N2+N3’ /léle+N2+N3 ’ ;{—{meLNerN;);
(3) Z3(M;3,N) = 1if there exists (2], 4], ]) € Z; such that
(0,0,p™) CINT = (af pMeheehis g pNithetis ] phieioeiiy

and 0 otherwise.
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8 Sautoy, Subgroups in nilpotent groups
Once we have done this, the measure can be expressed as

u(My, ..., Mg, N1, N>, N3)

3
= ZI(M1>N)ZZ(MZ,N)Z3(M3,N)<221(M,N)(p‘M _p—<M+1>)>
(a,b,c) M

Z\(Ma, N)Zy(Ms, N)Z3(Ms, N)|dal |db] |dc]|.

3.1. Calculating Z{(M,N). We shall begin by calculating a value for the function
Zl (Ml 3 N) .

Condition (3.1) is equivalent to the following conditions:

(33) le,WIQ,I’I’I3 = Omodel,
0 —d le
(3.4) (leva,m3) —a 0 0 =0 mode1+N2’
pM 0 —a
DpNHer ac _psz —Cle
(3.5)  (pM,ma,m3)| ac—pNb  pNi+N: 0 = 0 mod pNi+N+Ns.
_cle 0 ac —pNZb

Since (pM',my, m3) € p™ Z; by (3.3) we get that

0 if My < Ny,

Zi(MN) =1 o -
1( 1) ) {pZle(Ml—Nl,N) lle §M1

where Z| (M, N) is the measure of (ma,m;3) € Zﬁ satisfying

0 —a pM
(3.6) (pM my,m3)| —a 0 0 | =0modp™,
M0 —a
DpNHNe ge —pNop —cpM
(3.7) (p™,ma,m3)| ac—pNb  pMTN: 0 = 0 mod p™*t.
—cp™ 0 ac — p™N2b

We can write this as the problem of calculating the measure of (m,,m3) € Zj satisfying:

(p™',my, m3)(S1, S2) = 0 mod p™> %
where
0 _apN3 pN1+N3 DpNﬁ‘NZ ac —psz —CPN]
(38) (S17S2) - —apN3 0 0 ac _psz pN1+N2 0
pN1+N3 0 _apN3 —Cle 0 ac _psz
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Sautoy, Subgroups in nilpotent groups 9

Once we have the existence of one solution (p™!, M,, M3) then all the other solutions
are of the form (p™', My, M3) + (0, ma, m3) where (m,,mj3) is a solution of

(m27m3)(R1, RZ) = O mod pN2+N3

and

N 0 ac —pNb pNtM: 0 )

—da,
(39) (Rl,RZ) = (pNﬁN} N;

0 —ap —cp™M 0 ac — p™Nb

Once we have a solution then the value of Z;(Mj, N) is the measure of this set which
is
pU1+U2—2(N2+N3)
where
(3.10) U, :l’l’lil’l{u1,N2+N3}
U, = l’l’lil’l{uz,Nz + N3},

and

u; = min{v(det X): X isa 1 x 1 minor of (R}, R2)},
u, = min{v(det X): X is a 2 x 2 minor of (R, R2)} — u;.

Put b = ac — p™2b then in this case

u; = min{v(a) + N3, v(b), Ny + Na, N| + N3, v(c) + N },

2(v(a) + N3), v(acp™*Ns — bpNt¥s) = v(b) + Ny + Ny + N3,
U, = min 2Ny + Ny + N3, v(a) + v(b) + N3, v(a) + Ny + Ny + N3, — .
U(C) + 2N + Nz,v(bz),v(b) + N+ N,

We have to calculate a condition on M; that we have such a solution. Let H; be the
minimal value of M, such that there is a solution of

(p™,m2,m3)(S), ;) = 0 mod p™+.

Then the measure of all the solutions of (m, ma,m3)(S1,S2) = 0 mod pN2+s is

p*H1+U1+U2*2(N2+N3)

But we have another expression for this measure, namely it is

P Wi+ W+ W3—3(N2+N3)
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10 Sautoy, Subgroups in nilpotent groups

where
(3.11) Wi = min{wi, N2 + N3},
W2 = min{wz,Nz + N3},
W5 = min{W3,N2 4 N3},
and

w; = min{v(det X'): X isa 1 x 1 minor of (S, S2)},
wy = min{v(det X'): X is a 2 x 2 minor of (S1,S2)} — wi,

w3 = min{v(det X'): X is a 3 x 3 minor of (S, S2)} — w; — wy.
This provides us with a smooth way to understand the value of H.

An analysis of the 18 1 x 1 minors of (Si,S2), 45 2 x 2 minors and 20 3 x 3 minors
of (S, S,) reveals that

w| = min{v(a) +N3,U(5),N1 + Ny, Ny +N3,U(C) +N1},

2(v(a) + N3),v(a) + v(b) + N3,v(a) + v(c) + N1 + N3,
w2 =ming  u(a) + N; + Ny + N3, 0(b) + N1 + N3, 20(b),2N| +2N,, ¢ — Wi,
U(b) + U(C) + N1,2N; —|—2N3,2U(C) + 2N1,U(b) + N1 + N>,

S(U(a) —|—N3), v(a) + Ny + 2N3 + v(b) + Na,
v(a) + 2Ny + 2N3 4+ Na, 20(a) + v(b) + 2N,
2N; + Ny +2N3 + U(b), 3N +2N3 + N>,
3Ny + N3+ 2N,,2N| + N3 + U(C) + Ny, + U(b),
w3 = min 3N3 + Ny + N3 +v(c),2v(a) + Ny + Na + 2N3, — Wy — ws.

v(a) 4+ v(c) +2N1 + N> + N3, v(a) + 2v(b) + N3,

v(a) + v(b) + Ny + Na + N3, v(a) + 2N1 + 2N, + N3,

v(b) + v(b) + Ny + Ny + N3, v(b) + 2N, + 2N, + N3,
v(=b% — (cp™1)*pNi+Ne - DB(pNi+V2)?)

(We have used in our analysis that min{o(X + Y),v(X)} = min{v(X),v(Y)} and
min{o(X?),v(XY),0(Y?)} = min{v(X?),v(Y?)}. Also recall that we have assumed that D
is a unit in Z, since p is coprime to D.)

In conclusion we have

Proposition 3.1.

Zim Ny =4 © if My < U+ U,—(Wi+ Wy+ W3)+ N+ Ny + N,
(M, N) = pUH L 2NENAN o rhopyise,
where Uy, Uy, Wy, Wy, W3 are defined as above in (3.10) and (3.11).
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Sautoy, Subgroups in nilpotent groups 11
3.2. Calculating Z>(M,,N). As in the previous analysis

0 if M, < Ny,

Zr(M>,N) = > ;
2(M>,N) {lezz(Mz—Nl,N) if Ny £ M,

where Z,(M>, N) is the measure of ms € Z,, satisfying

0 —a pW
(3.12) (07PM27W‘3) —a 0 0 |=0 modeZ,
pM 0 —a
DpMtN qe —pNb —cpM
(3.13) (0.9, ms)| ac—pob  pMV: 0 — 0 mod p+,
—cp 0 ac — p™b

We can write the evaluation of Z_z(Mz, N) as the problem of calculating the measure
of m3 € Z,, satisfying:

(0,p™,m3)(S), $2) = 0 mod p™+4
where (Si, S>) was defined in (3.8).

Once we have the existence of one solution (0, p*2 M3) then all the other solutions
are of the form (0,p™2, M3) + (0,0, m3) where ms is a solution of

Ni+N: N3

ms - (p —ap™  —cp™ 0 ac—p™b) =0 mod p™ .

Once we have a solution then the value of Z,(M,, N) is the measure of this set which
is pVi=(M+N3) where

(3.14) ¥} = min{(N; 4+ N3),v(a) + N3,v(c) + N1, v(b), (N2 + N3)}.

Again we have to calculate a condition on M, that we have such a solution. Let H; be
the minimal value of M» such that there is a solution of

(p™2,m3)(Ry, R2) = 0 mod p™*

where (R, R») was defined in (3.9).

Then the measure of all the solutions of (2, m3)(R;, Ry) = 0 mod pV2+™s is

—Hy+ W —(N2+N3)
p .

But we have another expression for this measure, namely it is

p Ui+ Uy —2(N2+N3)

where U; and U, are defined above in (3.10).
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12 Sautoy, Subgroups in nilpotent groups
Again this provides us with a smooth way to understand the value of Hj.
In conclusion we have:
Proposition 3.2.

0 ifM2<V1—(U1+U2)+N1+N2+N3,

Z)(M,,N) =
2(M>,N) {p!/]—(N1+Nz+N3) otherwise,

where V) is defined in (3.14) and U, and U, are defined in (3.10).
3.3. Calculating Z3(M3,N). Similarly to the above we have

0 if M3 <N
Z3(M3,N):{ i 3 15

Z3y(M3 — Ny, N) if Ny < Ms,

where Z3(M3,N) = 1 if

0 —a ph
(3.15) 0,0,p)] —a 0 0 | =0modp™,
M0 —a
PPN ge—pNop —epi
(3.16) (0,0,p™) [ ac—pNp  pNith: 0 = 0 mod p™ s,
—cp™M 0 ac — p™Nb

We can see directly from the conditions (3.15) and (3.16) that Z3(M;3, N) = 1 if and only if

M3 = N, — Ny, N> — v(a),

M3 = Ny + N3 — Ny —v(c), Ny + N3 — v(ac — p™b),
and equals 0 otherwise.

If we return now to our integral we see that it is equal to

(317) Z p—M1S L p—MG(S—5)p—N1 (5‘—6)p—N2(S—7)p—N3(S—8)
Ml,...,MG,N17N27N3€N

3
| Z\(My,N)Zy(M>, N)Z3(M3,N) (Z Zi(M,N)(p™ _p—<M+1>)>
(a,b,c) M

Z) (M4,N)Zz(Ms,N)Z3(M6,N)|da‘ ’db| ’dC|

4. Integrating by parts: the bottom

To calculate the integral over the matrix for the centre, we shall need to know the
value of
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Sautoy, Subgroups in nilpotent groups 13

(a,b,¢) € Z}: v(a) = A,v(b) = B,v(b) = B,v(c) = C, }

Ay ps =AU - -
A,B,B,C,E,N{,N, { U(—b3 _ (CpN]>2le+Nz +Db(le+N2)2) - E

It will suffice to prove the following although our analysis provides precise informa-
tion about the linear functions and inequalities involved:

Proposition 4.1.  There exists a finite partition |J ©; of R’ defined by linear inequal-
ieS
ities with coefficients in Q and for each i € S, polynomials P;(X) and Q;(X) and linear func-
tion o;(x) and B,(x) such that if A = (A,B, B, C,E,Ni,N>) € N’ N ®; then

ax=a, g 5.c.pn = PPN + Qi(p)|E(E,) | p.

Proof. Recall b = ac — pN2b. We can do this bit by parts by first fixing 5 and ¢ and
calculating the measure of the corresponding a:

0 if B+ A4+ Cand N, — C>min(4,B—- C),
4 1y .

_ l-p7") ifB+A+Cand N;— C<min(4,B—C)

b N—C Agy )P ( = ; ;
/u(( /C+p P) np p) pC—N2 lfB:A+CandA+C<N2,
pA if B=A+Cand 4+ C < N,.

Then

ﬂ{(a,b,c)ef'v(a)—A ,0(b) = B,v(b) = B,v(c) = c}
v(—b3 (CpN‘)sz]+N2 +Db N1+N2) )

b,c 211)5:~Uc:
= u((b/c+p™2,) N pZ )pN2~u{v(_5(’)EZp (b) = B,u(c) = C, E}

= (ep™)’pNN 4 DB(pMNt)?) =
Hence it suffices to calculate the measure of
(4.1) u{(b,c) € Z2: v(b) = B,v(c) = C,v(=b> — (cp™)*p™*™ + Db(p™2)?) = E}
where now we write b for b and B for B to avoid too much notation.
The measure in (4.1) is the same as
pMuf{(b.c) e Zlf: v(b) = B,v(c) = C + Ny, v(=b> — ZpM* 4 Db(pN‘+N2)2) =E}.
Let Ny + N, = N.
We run over three cases: (1) N < B,C;2) B<N,B=C;(3) C<B,N.
(1) N £ B, C. We make a transformation b’ = b/p" and ¢’ = ¢/p":
w{(b,c) e Z;: v(b) = B,v(c) = C,v(=b* — *p" + Dbp*N) = E}
=p Mu{(b',¢") e Z3: v(b") = B—N,v(c') = C— N,v(—b" — ¢* + Db') = E — 3N}.
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14 Sautoy, Subgroups in nilpotent groups
We need to calculate a value for
cpc.e =p{(b,c) e Z;: v(b) = B,v(c) = C,v(—b* — ¢* + Db) = E}
(where we have replaced b, ¢’ by b and ¢).
If we put
dp.ce=p{(b,c)e Z;: v(b) = B,v(c) = C,v(—=b*> — ¢* + Db) = E}
then cp ¢ g =dp c.E —dp c E+1-
We shall suppose that p + 2.
Lemma 4.2. (1) If E < min{B,2C} then dg c.r =p p 2(1 —p 1)

2 If B+0 and min{B,2C} <E then dgcp=0 unless B=2C when
dpce=p "p “(1-p").

(3) If B=0then if | £ E <2C we have dy c.p = 2p~Ep=C(1 —p~1).

(4) IfB =0 then d0707E IpE_ld()’O’l :pE_l (‘E([Fp)| — 1)

Proof. (1) is clear. When B #+ 2C, (2) follows since we can’t get any solutions. (3)
forces the value of » = +1 mod p%. The remaining cases depend on the following quanti-
tative version of Hensel’s lemma applied to the non-singular curve E = Y> + X3 — DX:

Lemma4.3. Let E=1, p=+ 2. Let (b,c) € Z/p*Z with —b* — ¢*> + Db = 0 mod p~.
Then there exist exactly p elements (by,c1) e Z/pE+t'Z with b =by,c = c; mod pf and
—b} — ¢} + Dby = 0 mod pE+!.

Proof. Put by = b+ fpf and ¢; = ¢ + yp£. We are required to count how many
pairs (f,7) € {0,...,p — 1}2 there are satisfying:

(4.2) ~b3 — ¢} + Dby = 0 mod p=*.

We know that —b> — ¢?> + Db = tp¥ for some ¢. Hence expanding the equation (4.2)
and pulling out the common power of p¥ we have to solve:

t+ B(D — 3b%) — 2yc = 0 mod p.

If ¢ = 0 mod p then h(D — b?) = 0 mod p which implies that D — 35% & 0 mod p (as-
suming p =+ 2). Hence we get exactly p lifts to solutions (by,¢;). This completes Lemma
4.3.

This lemma implies that whenever E > B, C,0 then dg ¢ g1 = p 'dp c k-

If B=2C < E (B =2C = E is already covered) then dyc,c.p = p ECHVd, . C,2C+1-
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Sautoy, Subgroups in nilpotent groups 15

If C > 0 then dac,c2ci1 = p~Cp~HD(1 — p7!) since once ¢ is determined this forces the
value of b mod p2€+1.

If B=0 then do oz =p*'doo1=pE ' (|E(F,)| —1). This completes the proof of
Lemma 4.2.

Hence we can determine dp ¢, g once we know |E([F,)|.

(Note that although E = Y? + X3 — DX is non-singular, it does not have normal
crossings with the varieties X = 0 and Y = 0. We can see the normal crossing issue here in
a difference between dp.1,c g+1 and dp ci1,£+1 and their relationship to dp ¢, r. Namely

2 - 2
dp c+1,£41 = p~~dp ¢ g Whilst for example drc1o c1,E41 = P "dac, c,E-)

(2) B< N, B < C. Using a transformation b’ = p" /b and ¢’ = ¢/b it will suffice by
the same analysis as in case 1 to calculate a value for

dp.cg=p{(b,c)e Zﬁ: v(b) = B,v(c) = C,v(—1° — ¢*b + Db*) = E}
in the case that B> 1and C = 0.
Since B = 1 the following lemma is clear:
Lemma 4.4. dp ¢ g = 0 unless E = 0 in which case dp c.p = p 2 ¢(1 —pil)z.

(3) C < B, N. Using a transformation ' = b/c and ¢’ = p¥ /c it will suffice to cal-
culate for B, C > 0:

dp,c.e=pu{(b,c) e ZI%: v(b) = B,v(c) = C,v(~b* — ¢+ Dbc*) = E}.
Lemma 4.5. Suppose B,C > 0. Then
(1) if E < min{3B, C} then dp c.p = p~CB(1 — p~H)%;
(2) if 3B + C and min{3B, C} < E then dg ¢ g = 0;
(3) if3B= C thendgspr=p E8(1—-p1).

Proof. (1) and (2) are clear. (3) follows from the quantitative version of Hensel’s
Lemma for the non-singular curve —X3 — Y + DXY?:

Lemma 4.6. Let E>1, p+2. Let (b,c) € Z/pEZ with —b> — ¢+ Dbc* = 0 mod p~.
Then there exist exactly p elements (by,c1) e Z/pE+t'Z with b = by, c = c; mod pf and
—bj — ¢ + Db} = 0 mod p£+1.

Proof. Put by = b+ fpf and ¢; = ¢+ ypf. We are required to count how many
pairs (f,7) € {0,...,p — 1}2 there are satisfying:

(4.3) —b3 — ¢; + Dbei = 0 mod pEtl.
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16 Sautoy, Subgroups in nilpotent groups

We know that —b* — ¢ + Dbc? = tp* for some ¢. Hence expanding the equation (4.3)
and pulling out the common power of p£ we have to solve:

t+ B(Dc* — 3b*) — 2y(—1 4 2Dbc) = 0 mod p.

If Dc? — 3b? = 0 then 2Dbc? /3 — ¢ = ¢(2Dbc/3 — 1) = 0. So 2Dbc — 1 # 0 assuming
p + 2. Hence we get exactly p lifts to solutions (by, ¢;). This completes the proof of Lemma
4.6.

This lemma implies that whenever £ > B, C,1 then dp ¢ g+1 = p‘ldB, C.E-
If E<min{3B,C} thendp c.r =p “pB(1 —pil)z.
If 3B+ C and min{3B,C} < E then dp ¢ p = 0.

So the only interesting case 1S dp 3 . Our lemma implies that

—E+(3B+1 —E+(3B+1)p—Bp—(3B+1)(1 _p—l) :p—E—B(l —p_l).

dg3gE=Pp Vdp 383841 = p

Remark 1. Note that the case distinction in (1), (2) and (3) reflects a blow-up of the
variety —b* — ¢?n + Dbn? at the singular point (0, 0,0). Each case distinction represents the
image of the variety in the three separate charts that define the blow-up.

The above analysis suffices to prove Proposition 4.1.

We now return to the proof of Theorem 2.2. We combine the expressions for
Zi(My,N), Zy(M2,N), Z3(M5,N), the analysis of a, p 5 c g v, 5, With equation (3.17).
Together they imply that there exists a finite partition |J ®; of R!# defined by linear in-

ieS
equalities with coefficients in @ and for each i € S, polynomials P;(X) and Q;(X) and
linear function o;(x), f;(x), y;,(x) and 6;(x) such that for p coprime to 2D, putting
A= (AaBan CaElev"'7M67N1)N27N3>>

Ginp) =5 5 B VN 4 0 (p)|E(E)
IES AeN*"NO;

Proposition 2.3 implies then that there exist two rational functions P;(X,Y) and
P,(X,Y) e Q(X,Y) such that for p coprime to 2D:

Ciimy p(8) = Pi(p,p~°) + |E(Fy)|Pa(p,p~).

Hence Theorem 2.2 is proved.

5. Motivic zeta functions

In this section we show how to use the zeta function of a group to canonically as-
sociate to the group a subring of the Grothendieck ring. In particular we show why the
elliptic curve E = y? + x* — Dx is canonically associated to G(E).
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Sautoy, Subgroups in nilpotent groups 17

Let us recall the definition of the Grothendieck ring .# of algebraic varieties over a
field k. This is the ring generated by symbols [S], for each S an algebraic variety over k,
with the relations

(1) [S] = [S’] if S is isomorphic to S’;

(2) [S]=[S\S'] + [S'] if S" is closed in S; and
(3) [ x 5] = [S]S'].

We denote by L = [A}] the Lefschetz motive.

It is tempting given an expression (valid for almost all p)

(o, p(s) = I;T c(p)Wi(p,p™)

where
ci(p) =card{a e Y(F,): a e E;(F,) if and only if i e I'}

to associate the subring of the Grothendieck ring generated by the varieties. But how ca-
nonical or unique is this? In general it is not unique. It is possible to have non-isomorphic
varieties with the same number of points mod p. For example, suppose that calculating
G(r) p(5) by an alternative method we produce a formula of the form

Com) p(8) = Pl(p,p™") + |E'(F,)|P5(pp~")

where E’ is another elliptic curve. Then it does not mean that £ and E’ are isomorphic—
distinct varieties over Q may have the same number of points in [F,. In fact this is the case
if the elliptic curves E and E’ are isogenous. Much deeper is the fact, due to Faltings [6],
that if, for almost all primes p, |E(F,)| = |E'(F,)| then E and E’ are isogenous. Isogenous
elliptic curves define the same Chow motive. Therefore even without appealing to the for-
malism of motivic zeta functions, we may deduce:

Theorem 5.1. The Chow motive of E is canonically associated with G(E).

However by using recent work with Loeser [5] on the concept of a motivic zeta func-
tion we can in fact show that E is canonically associated to G(E). In [5] we define a motivic
zeta function associated to a Z-Lie algebra. This is a power series with coefficients in the
Grothendieck ring of algebraic varieties.

Let L be a Lie algebra over Z. Let Z'=(k) (respectively 2 “(k)) denote the class
of k[[f]]-subalgebras (respectively ideals) of L ® k[[7]] where k is a finite extension of Q.
Let A4,(Z")(k) denote the set of subalgebras or ideals in 2*(k) of codimension n in
L ® k[[7]]. Tt is shown in [5] why A4,(Z™) is a constructible set of the Grassmannian
Gr(L®k|[f]]/t"L ® k[[7]]) and hence [4,(Z*)] defines an element of the Grothendieck
ring. The motivic zeta function encodes the subalgebras or ideals of L ® k[[7]] and is de-
fined as follows:
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18 Sautoy, Subgroups in nilpotent groups

o0

Ploayy(T) = ;)[An(%*)]Tn e M[[T]].

Denote by ./ the ring .#[L™"'] obtained by localization and define by .#[T],,. the
subring of .#,oc[[T']] generated by .#oc[T] and the series (1 — L*T?) ' witha € Zand b € N.
It was shown in [5] that the power series P (T) is a rational function belonging to

LQ[[1]
M[T],,.- Let £ be the subring of .# generated by the Lefschetz motive L.

loc*

We make the following:

Definition 5.2. The space of varieties .4 =(L) (respectively .#*(L)) of L counting
subalgebras (respectively ideals) is defined to be the smallest #-submodule of .# containing
the coeflicients [A4,(Z)].

The rationality of /g, (7') implies that this module is in fact finitely generated.

In [5] it is shown that by “taking the trace of Frobenius™ of the motivic zeta function
of P/gqy(7T) that one can recover the local zeta functions {le z,(s) for almost all primes.
Let us explain this in more detail. For any variety X over @, one can choose a model % of
X over Z, and consider the number of points 7,(X') of the reduction of Z modulo p, for p a
prime number. Of course, for some prime numbers p, n,(X) may depend of the model Z,
but, for a given X, the numbers n,(X) are well defined for almost all p. If we denote by 2
the set of all primes, the sequence n,(X) is well defined as an element of the ring Z”’, where,

for any ring R, we set R” := [] R/@ R. Moreover, counting points being additive for
pPeEP peP P

disjoint unions and multiplicative for products, the sequence n,(X) in Z”” only depends

on the class of X in .# and may be extended to a ring morphism n: .# — 7”’'. Setting

1, (L™!) = 1/p, one may extend uniquely 7 to a ring morphism n: .#1,c — Q7".

What is the relationship then between .4 *(L) and the varieties that we have to count
points on mod p to calculate (7o, (s)?

Let E; (i e T, T finite) be the subvarieties arising from the resolution of singularities
of the polynomial F; (X) associated to a presentation of L that arose in proving the explicit
expression for (7o (s) in [4]. (Note that the polynomial F;(X) depends on a choice of
presentation for L and we also have a choice in the resolution we take in general.) As
proved in [5] the proof of the explicit formula in [4] translates into an explicit expression for
Flgaqy(T) of the same form

Flgou(T) = IZT[E;] Wi(L,T)

where W;(X,Y) e Q(X,Y) are rational functions, and E; = () E; and E} = E;\ | E;.

iel JjeT\I
When 7 = (), we have Ey = Y. Note however that the definition of Floay) (T) is indepen-
dent of any choices made in the calculation.

Hence .#*(L) is contained in the #-submodule generated by the varieties E; (i € T)
which arise from a resolution of singularities of the polynomial F7(X) defined from a pre-
sentation for L.
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Sautoy, Subgroups in nilpotent groups 19

For the Lie algebra L(E) one can follow the calculation above for {7 ) z,(s) to show
that it formally translates into the same result for the motivic zeta function of L(E):

Theorem 5.3. Py ooy (T) = Pi(L, T) + [E]|P,(L, T).

Corollary 5.4. .#/*(L(E)) is the #-submodule generated by [E). The elliptic curve [E]
is canonically associated with L(E) and hence G(E).

In [3] we analysed the subalgebras of index p? in L(E) to show that { Lg( E)®Zp(s) is also
not finitely uniform. Although the conditions are little more complex, I would conjecture
the following:

Conjecture 5.5.  There exist two rational functions P\(X,Y) and P,(X,Y) e Q(X,Y)
such that for almost all primes p:

CLé(E),p(S) = Pi(p.p~") +|E(F)|P(p,p~")
and

Pé

rpeaiy(T) =L, T) + [E]lP (L, T).

Hence M= (L(E)) is the additive subgroup generated by [E| and the Lefschetz motive L.

The method of considering minors of matrices developed in section 3 certainly has
some prospect for generalization. It seems likely that it will provide the key for example to
determining for a general class two nilpotent group or Lie algebra a candidate for the
smallest subring of the Grothendieck ring required to express the associated motivic zeta
function counting ideals or normal subgroups. In other words, to count these ideals or
normal subgroups can be reduced to counting points on the varieties from a resolution of
singularities of the polynomial defined by a product of the minors of these matrices.

Also the method of constructing a presentation of a Lie algebra from the determinants
of certain matrices seems also ripe for generalization. For example, suppose that we have
a variety V defined as the solution set of a homogeneous polynomial f(X7,...,X,) € Z[X] of
degree r. Suppose we can define an r x r matrix (g;(X)) where g;(X) are linear poly-
nomials with coefficients in Z with the property that

S (X, X) = det(g5(X)).
Define a Lie algebra
L(V)=LA1,...,4,,By,....B., X1,..., X, [4;, Bj] = g;i(X))

where all other commutators are zero. Then the analysis above suggests that .# q(L( V))
should contain the variety [V]. However it is also likely to contain all the varieties defined
by the various minors of (g;;(X)). The other point to bare in mind is of course that there
is the possibility that cancelling of varieties might occur which could see the variety V' dis-
appear.

This at least raises the interesting problem:
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20 Sautoy, Subgroups in nilpotent groups

Problem. Let f(Xi,...,X,) € Z[X] be a homogeneous polynomial. Does there exist
an r x r matrix (g;(X)) where g;;(X) are linear polynomials with coefficients in Z with the
property that

f(Xi,..., X,) = det(g;(X))?

Does there exist an m x m matrix (g;(X,Z)) where g;(X,Z) are linear polynomials with
coefficients in Z with the property that

Z"f(X0, ., X)) = det(g5(X, Z))?

The second question allows us some more flexibility and we can define an associated
Lie algebra:

L(f)=<A41,...,4n,B\,....,Bp, X1,..., Xy, Z: (4;, Bj) = g;§(X, Z)).

Note that the elliptic curves we have considered of the form E = y? 4+ x3 — Dx all
have complex multiplication. If you would like an example of a nilpotent group which in-
volves counting points mod p on an elliptic curve without complex multiplication, for ex-
ample E = y*> +y + x> — x, I would conjecture the following:

Conjecture 5.6. Let G be the nilpotent group with presentation:

G(E) = <xlsz,xs,x4,x5,x67y1,)’2ay33 [x1, X4] = 3, [x1,X5] = y1, [x1, Xg] =y2,>
[x2,X4] = y1, [X2, X5] = 3, [¥x3, X4]) = yoy3, [¥x3, X6] = 1 '

Then there exist two non-zero rational functions P\(X,Y) and P,(X,Y) € Q(X, Y) such that
for almost all primes p:

(oipyp(s) = Pr(p.p™") + | E(F,)[P2(p,p™)
where E is the elliptic curve E = y* + y + x> — x without complex multiplication.

Note that the associated Lie algebra has a presentation

L(E) _ <Xlaxz,xaX4,x5,x6,y1,y2,y32 (X1,X4) =3, (Xl,xs) =J1, (Xl,xé) =y27>
(x2,x4) = y1, (x2,X5) = p3, (X3, X4) = y2 + ¥3, (X3, X6) = )i

and

det((xi, x34)) = — (V33 + 3203 + 37 — »133).
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