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1. Introduction

We shall explain how to use zeta functions of groups to generate a hierarchy within
the class of finitely generated nilpotent groups indexed by certain subrings of the Gro-
thendieck ring of varieties.

The zeta function of a group was introduced by Grunewald, Segal and Smith in [7]
to provide a new invariant for a finitely generated nilpotent group G. It is defined as a
Dirichlet series encoding the number ae

n ðGÞ of all subgroups of index n in G:

ze

G ðsÞ ¼
P

HeG

jG : Hj�s ¼
Py
n¼1

ae
n ðGÞn�s:

They also defined the normal zeta function of G:

z/GðsÞ ¼
P
H/G

jG : Hj�s ¼
Py
n¼1

a/n ðGÞn�s

where the coe‰cients a/n ðGÞ of the Dirichlet series record the number of normal subgroups
of index n in G. The expression as a sum over subgroups suggests that this is a natural non-
commutative generalization of the zeta function of a number field.

These zeta functions decompose as Euler products of local factors: for � A fe; /g

z�GðsÞ ¼
Q

p prime

z�G;pðsÞ

where

z�G;pðsÞ ¼
Py
n¼0

a�pnðGÞp�ns:
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The local factors were proved in [7] to be rational functions in p�s. One of the major
open problems raised in [7] was the dependence on p of these local factors. The authors
speculated that the analogy with the zeta function of a number field might imply a finitely
uniform description for these local factors.

This was clarified in recent work with Grunewald [4]. We show that it is the Weil zeta
function counting points on varieties mod p on varieties which o¤ers the better analogy
rather than the zeta function of a number field. It is this recent work together with work of
myself and Loeser [5] on the concept of an associated motivic zeta function which reveals a
path from nilpotent groups to subrings of the Grothendieck ring of algebraic varieties.

In [4] we have provided an explicit formula for these local factors which depends on
counting points mod p on an explicit system of subvarieties Ei (i A T , T finite) of a variety Y
defined over Z: for each subset I of T there exists a rational functionWI ðX ;YÞ A QðX ;Y Þ
such that for almost all primes p

z�G;pðsÞ ¼
P
IHT

cI ðpÞWI ðp; p�sÞð1:1Þ

where

cI ðpÞ ¼ cardfa A Y ðFpÞ: a A EiðFpÞ if and only if i A Ig:ð1:2Þ

The varieties Ei are the irreducible components corresponding to a resolution of sin-
gularities of a polynomial FGðX Þ defined from a presentation for G (or rather its associated
Lie algebra L).

To attach some subring of the Grothendieck ring to the nilpotent group G, the idea is
to look at the ring generated by the varieties that we need to count points on mod p to get
an explicit expression like (1.1). However, this expression involves many choices: a choice
of a presentation for G, a choice of a resolution of singularities, and a choice of simplicial
decomposition of an associated cone in which we count lattice points. Not only that, but
non-isomorphic varieties can have the same number of points mod p. So on its own the
explicit expression derived in [4] is not enough to attach in some well-defined manner some
subring of the Grothendieck ring to G. It is the concept of an associated motivic zeta func-
tion attached to these zeta functions which allows one to canonically associate a subring of
the Grothendieck ring to G. This motivic zeta function takes its values in the Grothendieck
ring and by ‘‘taking the trace of Frobenius’’ of the motivic zeta function one recovers the
original zeta functions z�G;pðsÞ. The motivic zeta function is however independent of a pre-
sentation and resolution. Hence the subring generated by the coe‰cients of the zeta func-
tion is canonically associated to the group G.

Despite this theoretical work it was unclear what sort of varieties could possibly ap-
pear in expressions for z�G;pðsÞ. Indeed the speculations in the original paper of Grunewald,
Segal and Smith [7] implied that it was plausible that one only got varieties whose number
of points mod p were finitely uniform (i.e. given by a polynomial in p depending on some
finite partition of primes), e.g. rational varieties or Artin motives. So all nilpotent groups
would sit at the bottom of the hierarchy we are proposing.

In this paper we present examples which show that these zeta functions contain in
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general a much richer algebraic geometry than simply rational varieties. In particular we
prove

Theorem 1.1. For each elliptic curve E ¼ y2 þ x3 �Dx, define a nilpotent group GðEÞ
by the following presentation:

GðEÞ ¼ x1; x2; x3; x4; x5; x6; y1; y2; y3: ½x1; x4� ¼ yD3 ; ½x1; x5� ¼ y1; ½x1; x6� ¼ y2;

½x2; x4� ¼ y1; ½x2; x5� ¼ y3; ½x3; x4� ¼ y2; ½x3; x6� ¼ y1

� �
:

Then there exist two rational functions P1ðX ;YÞ and P2ðX ;YÞ A QðX ;Y Þ such that for al-

most all primes p:

z/GðEÞ;pðsÞ ¼ P1ðp; p�sÞ þ jEðFpÞjP2ðp; p�sÞ:

A corollary to results proved in a previous paper [3] in the case of D ¼ 1 implies that
the rational functions P1ðX ;YÞ and P2ðX ;Y Þ are non-zero, i.e. that one can’t avoid counting
points on the elliptic curve E. The proof depends on counting the number of normal sub-
groups of index p5 and can easily be adapted to prove the same result for general D.

In section 5 we shall explain the concept of the associated motivic zeta function de-
veloped in [5] which will imply the following:

Corollary 1.2. The curve E is canonically attached to the nilpotent group GðEÞ.

The methods developed in this paper o¤er the hope to show that nilpotent groups can
involve arbitrary varieties. However there is one class of groups of which it is still con-
jectured that the associated varieties are all rational, namely free nilpotent groups (see [7]).
This conjecture has been demonstrated to have more significance than first realised. In [1]
and [2] it is explained why this conjecture relates to Higman’s PORC conjecture that the
number f ðp; nÞ of p-groups of order pn is given, for each fixed n, by polynomials in p de-
pending only on the residue class of p modulo some fixed integer Nn.

Acknowledgements. I would like to thank the Royal Society for support in the form
of a University Research Fellowship. I would also like to thank the Max Planck Institut in
Bonn where the group GðEÞ flashed into my head one evening and for invaluable conversa-
tions with Fritz Grunewald during my time at the MPI. Thanks are also due to my Ph.D.
student Christopher Voll who corrected a number of errors in the original manuscript.

2. Nilpotent groups and elliptic curves

Let LðEÞ be the class two nilpotent Lie algebra over Z of dimension 9 as a free
Z-module given by the following presentation:

LðEÞ ¼ x1; x2; x3; x4; x5; x6; y1; y2; y3: ðx1; x4Þ ¼ Dy3; ðx1; x5Þ ¼ y1; ðx1; x6Þ ¼ y2;

ðx2; x4Þ ¼ y1; ðx2; x5Þ ¼ y3; ðx3; x4Þ ¼ y2; ðx3; x6Þ ¼ y1

� �

where all other commutators are defined to be 0. Then LðEÞnQ is the Q-Lie algebra as-
sociated to the torsion-free finitely generated nilpotent group GðEÞ under the Mal’cev cor-
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respondence. We can define the ideal zeta function associated to LðEÞ similarly to the
normal zeta function associated to GðEÞ:

z/LðEÞ;pðsÞ ¼
Py
n¼0

a/pn
�
LðEÞ

�
p�ns

where a/pnðLÞ is the number of ideals of L of index pn. Section 4 of [7] confirms the following:

Proposition 2.1. For almost all primes p,

z/GðEÞ;pðsÞ ¼ z/LðEÞ;pðsÞ:

It therefore su‰ces to prove:

Theorem 2.2. There exist two rational functions P1ðX ;YÞ and P2ðX ;YÞ A QðX ;Y Þ
such that for p coprime to 2D:

z/LðEÞ;pðsÞ ¼ P1ðp; p�sÞ þ jEðFpÞjP2ðp; p�sÞ:

We begin by recalling something of the proof of (1.1) in [4] which will motivate the
direction for the proof of Theorem 2.2. The proof of this explicit formula breaks up into a
number of stages:

(1) We show how to express z/LðEÞ;pðsÞ as something we call a cone integral.
Cone integrals are defined for a set of cone integral data consisting of polynomials
D ¼ f f0ðxÞ; g0ðxÞ; . . . ; flðxÞ; glðxÞg by

ZDðs; pÞ ¼
Ð

VpðDÞ
j f0ðxÞjsjg0ðxÞj jdxj

where

VpðDÞ ¼
�
x A Zm

p : v
�
fiðxÞ

�
e v

�
giðxÞ

�
for i ¼ 1; . . . ; l

	
and jdxj is the additive Haar measure on Zm

p . The cone integrals in the case of counting
ideals in a Lie algebra L of dimension d are defined as follows: let Cj ¼

�
cikð jÞ

�
be the

d 
 d matrix defined by ðei; ejÞ ¼
Pd
k¼1

cikð jÞek. LetM ¼ ðmijÞ be an upper triangular matrix

whose rows we shall call mi and denote byM
y the adjoint matrix. Then define polynomials

g/ijkðmrsÞ in the entries of this triangular matrix to be the kth entry of the d-tuple miCjM
y.

The cone conditions defining z/L;pðsÞ are given then by

VpðDÞ ¼
�
x A Zm

p : vðm11 � � �mddÞe v
�
g/ijkðmrsÞ

�
for i; j; k ¼ 1; . . . ; d

	
and z/L;pðsÞ can be expressed in terms of the associated cone integral by

z/L;pðsÞ ¼ ð1� p�1Þ�d
Ð

VpðDÞ
jm11 � � �mdd js�d jmd�1

11 � � �md�1d�1j jdxj:
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(2) If the polynomials involved in the cone integrals are all monomial then the cal-
culation reduces to a discrete problem about summing lattice points representing the valu-
ations of the variables mij satisfying various linear inequalities. We explain in the next
step why this is uniform in p. But in general the polynomials g/ijkðmrsÞ are far from mono-
mial. To overcome this problem we do a resolution of singularities on the polynomial
FLðMÞ ¼ m11 � � �mdd

Q
i; j;k

g/ijkðmrsÞ which results in a partition of the resolved space into re-

gions on which the polynomial FLðMÞ now becomes monomial. The partitioning of this
space naturally leads to the problem of counting points on the associated irreducible com-
ponents Ei ði A TÞ of the resolution of singularities of FLðMÞ. This is the only place where
the evaluation of this integral depends in some essential way on p. Apart from throwing
away finitely many primes at various points (e.g. where the resolution has bad reduction)
the integral is uniform outside this partitioning.

(3) This reduces our integral to a finite sum
P
IHT

cI ðpÞZIðsÞ, where the coe‰cients

cI ðpÞ defined in (1.2) capture the essential dependence on p, and the ZI ðsÞ are cone in-
tegrals with respect to monomial polynomials of the following shape:

ZI ðsÞ ¼
Ð

VpðIÞ
jy1ja0i1 sþb0i1 � � � jyrja0ir sþb0ir jdyj

where I ¼ fi1; . . . ; irg and

VpðIÞ ¼ fy A ðpZpÞm: vðjy1jaji1 � � � jyrjajir Þe vðjy1jbji1 � � � jyrjbjir Þ for j ¼ 1; . . . ; lg:

These in turn can be expressed as a sum over lattice points n ¼ ðn1; . . . ; nmÞ corresponding
to the valuations ni ¼ vðyiÞ:

ZIðsÞ ¼ ð1� p�1Þrpm�rP
n AL

ðp�ða0i1 sþb0i1þ1Þn1�����ða0ir sþb0irþ1ÞnrÞ

where

L ¼ fn A Nm
>0: aji1n1 þ � � � þ ajirnr e bji1n1 þ � � � þ bjirnr for j ¼ 1; . . . ; lg:

The evaluation of ZI ðsÞ is therefore independent of p thanks to the following propo-
sition contained in [4] which we shall use later on in this paper:

Proposition 2.3. Suppose there exists a finite partition
S
i AS

Yi of Rd defined by linear

inequalities with coe‰cients over Q and for each i A S linear functions aiðxÞ and biðxÞ defined
over Q . Then there exist rational functions HiðX ;YÞ A QðX ;Y Þ such that for each i A S

P
n ANdXYi

p�aðnÞs�bðnÞ ¼ Hiðp; p�sÞ:

These geometric progressions can be calculated by decomposing each cone Yi defined
by the linear inequalities into open simplicial cones with fundamental regions of volume 1.
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Our strategy in proving Theorem 2.2 is that once we have established the shape of the
cone integrals depending on the presentation of LðEÞ, we shall perform a direct analysis to
partition our integral according to points on the elliptic curve such that the individual in-
tegrals reduce to sums of lattice points of the shape detailed in Proposition 2.3.

Our direct analysis calculates the integral by parts exploiting the fact that in a class
two nilpotent Lie algebra, the algebra splits into two abelian sections. We first integrate the
‘top’, the abelianisation, with respect to some fixed choice of basis for the centre. We then
integrate the ‘bottom’, the centre, with respect to the functions introduced in the evalua-
tion of the top. The analysis avoids the direct application of a resolution of singularities
although there is in fact a hidden blow-up at the heart of some of the case analysis in con-
sidering the integral of the bottom.

Note that the analysis could be carried through to its ultimate conclusion resulting in
an explicit evaluation of the zeta function. However the analysis in (3) involving a sim-
plicial decomposition of cones C, although uniform in p, results in general in a very com-
plicated case analysis. Since this paper has its focus in the dependence on p of these local
factors, we have chosen to subsume these complications under the umbrella of a uniform
calculation.

Proof of Theorem 2.2. Let

Cð1Þ ¼
0 0 D

1 0 0

0 1 0

0
@

1
A;

Cð2Þ ¼
1 0 0

0 0 1

0 0 0

0
@

1
A;

Cð3Þ ¼
0 1 0

0 0 0

1 0 0

0
@

1
A:

Then for i; j ¼ 1; 2; 3 we have

ðxi; xjþ3Þ ¼ Ci1ð jÞy1 þ Ci2ð jÞy2 þ Ci3ð jÞy3

¼ Cj1ðiÞy1 þ Cj2ðiÞy2 þ Cj3ðiÞy3:

From the analysis described above in (1) from [4] we can express the zeta function
z/LðEÞ;pðsÞ for all primes p by the following cone integral:

z/LðEÞ;pðsÞ ¼ ð1� p�1Þ�9
Ð
Vp

jm11js�1 � � � jm66js�6jn1js�7jn2js�8jn3js�9jdmj jdnjð2:1Þ

where dm and dn are additive Haar measures on Tr6ðZpÞ and Tr3ðZpÞ respectively and Vp
consists of all pairs of matrices
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ðM;NÞ ¼

0
B@ðmijÞ;

n1 a b

0 n2 c

0 0 n3

0
@

1
A
1
CA A Tr6ðZpÞ 
 Tr3ðZpÞ

satisfying: for i ¼ 1; . . . ; 6; e ¼ 0 or 3 and j ¼ 1; 2; 3 there exists ðl j
ieþ1; l

j
ieþ2; l

j
ieþ3Þ A Z3p such

that

ðmieþ1;mieþ2;mieþ3ÞCð jÞN y ¼ ðl j
ieþ1n1n2n3; l

j
ieþ2n1n2n3; l

j
ieþ3n1n2n3Þð2:2Þ

where N y is the adjoint matrix

N y ¼
n2n3 �an3 ac� n2b

0 n3n1 �cn1
0 0 n1n2

0
@

1
A:

The integral (2.1) is the same as the sum:

P
M1;...;M6;N1;N2;N3 AN

p�M1s � � � p�M6ðs�5Þp�N1ðs�6Þp�N2ðs�7Þp�N1ðs�8ÞmðM1; . . . ;M6;N1;N2;N3Þ

where mðM1; . . . ;M6;N1;N2;N3Þ is the measure of the set of
�
ðmijÞi< j; a; b; c

�
satisfying

(2.2) with mii replaced by pMi and nj replaced by pNj .

3. Integrating by parts: the top

We look to establish an expression for mðM1; . . . ;M6;N1;N2;N3Þ by calculating the
measure modulo the matrix for the centre N. We integrate by parts by performing the in-
tegration on the matrix for the abelianisation. It will su‰ce by symmetry to calculate values
for the following functions: for each M1 and

N ¼
pN1 a b

pN2 c

pN3

0
@

1
A A Tr3ðZpÞ

(1) Z1ðM1;NÞ ¼ mðW1Þ where W1 consists of ðm2;m3Þ A Z2p such that for each

j ¼ 1; 2; 3 there exists ðl j
1; l

j
2; l

j
3Þ A Z3p

ðpM1 ;m2;m3ÞCð jÞN y ¼ ðl j
1p

N1þN2þN3 ; l j
2p

N1þN2þN3 ; l j
3p

N1þN2þN3Þ;ð3:1Þ

(2) Z2ðM2;NÞ ¼ mðW2Þ where W2 consists of m3 A Zp such that for each j ¼ 1; 2; 3
there exists ðl j

1; l
j
2; l

j
3Þ A Z3p

ð0; pM2 ;m3ÞCð jÞN y ¼ ðl j
1p

N1þN2þN3 ; l j
2p

N1þN2þN3 ; l j
3p

N1þN2þN3Þ;ð3:2Þ

(3) Z3ðM3;NÞ ¼ 1 if there exists ðl j
1; l

j
2; l

j
3Þ A Z3p such that

ð0; 0; pM3ÞCð jÞN y ¼ ðl j
1p

N1þN2þN3 ; l j
2p

N1þN2þN3 ; l j
3 p

N1þN2þN3Þ

and 0 otherwise.
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Once we have done this, the measure can be expressed as

mðM1; . . . ;M6;N1;N2;N3Þ

¼
Ð

ða;b; cÞ
Z1ðM1;NÞZ2ðM2;NÞZ3ðM3;NÞ

P
M

Z1ðM;NÞðp�M � p�ðMþ1ÞÞ
� �3

Z1ðM4;NÞZ2ðM5;NÞZ3ðM6;NÞjdaj jdbj jdcj:

3.1. Calculating Z1(M1,N ). We shall begin by calculating a value for the function
Z1ðM1;NÞ.

Condition (3.1) is equivalent to the following conditions:

pM1 ;m2;m31 0 mod pN1 ;ð3:3Þ

ðpM1 ;m2;m3Þ
0 �a pN1

�a 0 0

pN1 0 �a

0
B@

1
CA1 0 mod pN1þN2 ;ð3:4Þ

ðpM1 ;m2;m3Þ
DpN1þN2 ac� pN2b �cpN1
ac� pN2b pN1þN2 0

�cpN1 0 ac� pN2b

0
B@

1
CA1 0 mod pN1þN2þN3 :ð3:5Þ

Since ðpM1 ;m2;m3Þ A pN1Z3p by (3.3) we get that

Z1ðM1;NÞ ¼ 0 if M1 < N1;

p�2N1ZðM1 �N1;NÞ if N1eM1

�

where Z1ðM1;NÞ is the measure of ðm2;m3Þ A Z2p satisfying

ðpM1 ;m2;m3Þ
0 �a pN1

�a 0 0

pN1 0 �a

0
B@

1
CA1 0 mod pN2 ;ð3:6Þ

ðpM1 ;m2;m3Þ
DpN1þN2 ac� pN2b �cpN1
ac� pN2b pN1þN2 0

�cpN1 0 ac� pN2b

0
B@

1
CA1 0 mod pN2þN3 :ð3:7Þ

We can write this as the problem of calculating the measure of ðm2;m3Þ A Z2p satisfying:

ðpM1 ;m2;m3ÞðS1;S2Þ1 0 mod pN2þN3

where

ðS1;S2Þ ¼

0
B@ 0 �apN3 pN1þN3 DpN1þN2 ac� pN2b �cpN1

�apN3 0 0 ac� pN2b pN1þN2 0

pN1þN3 0 �apN3 �cpN1 0 ac� pN2b

1
CA:ð3:8Þ
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Once we have the existence of one solution ðpM1 ;M2;M3Þ then all the other solutions
are of the form ðpM1 ;M2;M3Þ þ ð0;m2;m3Þ where ðm2;m3Þ is a solution of

ðm2;m3ÞðR1;R2Þ1 0 mod pN2þN3

and

ðR1;R2Þ ¼
 

�apN3 0 0 ac� pN2b pN1þN2 0

pN1þN3 0 �apN3 �cpN1 0 ac� pN2b

!
:ð3:9Þ

Once we have a solution then the value of Z1ðM1;NÞ is the measure of this set which
is

pU1þU2�2ðN2þN3Þ

where

U1 ¼ minfu1;N2 þN3gð3:10Þ

U2 ¼ minfu2;N2 þN3g;

and

u1 ¼ minfvðdetXÞ: X is a 1
 1 minor of ðR1;R2Þg;

u2 ¼ minfvðdetXÞ: X is a 2
 2 minor of ðR1;R2Þg � u1:

Put ~bb ¼ ac� pN2b then in this case

u1 ¼ minfvðaÞ þN3; vð~bbÞ;N1 þN2;N1 þN3; vðcÞ þN1g;

u2 ¼ min
2
�
vðaÞ þN3

�
; vðacpN1þN3 � ~bbpN1þN3Þ ¼ vðbÞ þN1 þN2 þN3;

2N1 þN2 þN3; vðaÞ þ vð~bbÞ þN3; vðaÞ þN1 þN2 þN3;

vðcÞ þ 2N1 þN2; vð~bb2Þ; vð~bbÞ þN1 þN2

8><
>:

9>=
>;� u1:

We have to calculate a condition on M1 that we have such a solution. Let H1 be the
minimal value ofM1 such that there is a solution of

ðpM1 ;m2;m3ÞðS1;S2Þ1 0 mod pN2þN3 :

Then the measure of all the solutions of ðm1;m2;m3ÞðS1;S2Þ1 0 mod pN2þN3 is

p�H1þU1þU2�2ðN2þN3Þ:

But we have another expression for this measure, namely it is

pW1þW2þW3�3ðN2þN3Þ
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where

W1 ¼ minfw1;N2 þN3g;ð3:11Þ

W2 ¼ minfw2;N2 þN3g;

W3 ¼ minfw3;N2 þN3g;

and

w1 ¼ minfvðdetX Þ: X is a 1
 1 minor of ðS1;S2Þg;

w2 ¼ minfvðdetX Þ: X is a 2
 2 minor of ðS1;S2Þg � w1;

w3 ¼ minfvðdetX Þ: X is a 3
 3 minor of ðS1;S2Þg � w1 � w2:

This provides us with a smooth way to understand the value of H1.

An analysis of the 18 1
 1 minors of ðS1;S2Þ, 45 2
 2 minors and 20 3
 3 minors
of ðS1;S2Þ reveals that

w1 ¼ minfvðaÞ þN3; vð~bbÞ;N1 þN2;N1 þN3; vðcÞ þN1g;

w2 ¼ min
2
�
vðaÞ þN3

�
; vðaÞ þ vð~bbÞ þN3; vðaÞ þ vðcÞ þN1 þN3;

vðaÞ þN1 þN2 þN3; vð~bbÞ þN1 þN3; 2vð~bbÞ; 2N1 þ 2N2;
vð~bbÞ þ vðcÞ þN1; 2N1 þ 2N3; 2vðcÞ þ 2N1; vð~bbÞ þN1 þN2;

8><
>:

9>=
>;� w1;

w3 ¼ min

3
�
vðaÞ þN3

�
; vðaÞ þN1 þ 2N3 þ vðbÞ þN2;

vðaÞ þ 2N1 þ 2N3 þN2; 2vðaÞ þ vð~bbÞ þ 2N3;
2N1 þN2 þ 2N3 þ vðbÞ; 3N1 þ 2N3 þN2;

3N1 þN3 þ 2N2; 2N1 þN3 þ vðcÞ þN2 þ vðbÞ;
3N3 þN2 þN3 þ vðcÞ; 2vðaÞ þN1 þN2 þ 2N3;
vðaÞ þ vðcÞ þ 2N1 þN2 þN3; vðaÞ þ 2vð~bbÞ þN3;

vðaÞ þ vð~bbÞ þN1 þN2 þN3; vðaÞ þ 2N1 þ 2N2 þN3;

vðbÞ þ vð~bbÞ þN1 þN2 þN3; vðbÞ þ 2N1 þ 2N2 þN3;

v
�
�~bb3 � ðcpN1Þ2pN1þN2 þD~bbðpN1þN2Þ2

�

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

� w1 � w2:

(We have used in our analysis that minfvðX þ YÞ; vðX Þg ¼ minfvðX Þ; vðYÞg and
minfvðX 2Þ; vðXY Þ; vðY 2Þg ¼ minfvðX 2Þ; vðY 2Þg. Also recall that we have assumed that D
is a unit in Zp since p is coprime to D.)

In conclusion we have

Proposition 3.1.

Z1ðM1;NÞ ¼ 0 if M1 <U1þU2�ðW1þW2þW3Þ þN1þN2þN3;

pU1þU2�2ðN1þN2þN3Þ otherwise;

�

where U1;U2;W1;W2;W3 are defined as above in (3.10) and (3.11).
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3.2. Calculating Z2(M2,N ). As in the previous analysis

Z2ðM2;NÞ ¼ 0 if M2 < N1;

p�N1Z2ðM2 �N1;NÞ if N1eM2;

�

where Z2ðM2;NÞ is the measure of m3 A Zp satisfying

ð0; pM2 ;m3Þ
0 �a pN1

�a 0 0

pN1 0 �a

0
B@

1
CA1 0 mod pN2 ;ð3:12Þ

ð0; pM2 ;m3Þ
DpN1þN2 ac� pN2b �cpN1
ac� pN2b pN1þN2 0

�cpN1 0 ac� pN2b

0
B@

1
CA1 0 mod pN2þN3 :ð3:13Þ

We can write the evaluation of Z2ðM2;NÞ as the problem of calculating the measure
of m3 A Zp satisfying:

ð0; pM2 ;m3ÞðS1;S2Þ1 0 mod pN2þN3

where ðS1;S2Þ was defined in (3.8).

Once we have the existence of one solution ð0; pM2 ;M3Þ then all the other solutions
are of the form ð0; pM2 ;M3Þ þ ð0; 0;m3Þ where m3 is a solution of

m3 � ðpN1þN3 0 �apN3 �cpN1 0 ac� pN2bÞ1 0 mod pN2þN3 :

Once we have a solution then the value of Z2ðM2;NÞ is the measure of this set which
is pV1�ðN2þN3Þ where

V1 ¼ minfðN1 þN3Þ; vðaÞ þN3; vðcÞ þN1; vð~bbÞ; ðN2 þN3Þg:ð3:14Þ

Again we have to calculate a condition onM2 that we have such a solution. Let H2 be
the minimal value of M2 such that there is a solution of

ðpM2 ;m3ÞðR1;R2Þ1 0 mod pN2þN3

where ðR1;R2Þ was defined in (3.9).

Then the measure of all the solutions of ðm2;m3ÞðR1;R2Þ1 0 mod pN2þN3 is

p�H2þV1�ðN2þN3Þ:

But we have another expression for this measure, namely it is

pU1þU2�2ðN2þN3Þ

where U1 and U2 are defined above in (3.10).
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Again this provides us with a smooth way to understand the value of H2.

In conclusion we have:

Proposition 3.2.

Z2ðM2;NÞ ¼ 0 if M2 < V1 � ðU1 þU2Þ þN1 þN2 þN3;

pV1�ðN1þN2þN3Þ otherwise;

�

where V1 is defined in (3.14) and U1 and U2 are defined in (3.10).

3.3. Calculating Z3(M3,N ). Similarly to the above we have

Z3ðM3;NÞ ¼ 0 if M3 < N1;

Z3ðM3 �N1;NÞ if N1eM3;

�

where Z3ðM3;NÞ ¼ 1 if

ð0; 0; pM3Þ
0 �a pN1

�a 0 0

pN1 0 �a

0
B@

1
CA1 0 mod pN2 ;ð3:15Þ

ð0; 0; pM3Þ
DpN1þN2 ac� pN2b �cpN1
ac� pN2b pN1þN2 0

�cpN1 0 ac� pN2b

0
B@

1
CA1 0 mod pN2þN3 :ð3:16Þ

We can see directly from the conditions (3.15) and (3.16) that Z3ðM3;NÞ ¼ 1 if and only if

M3fN2 �N1;N2 � vðaÞ;

M3fN2 þN3 �N1 � vðcÞ;N2 þN3 � vðac� pN2bÞ;

and equals 0 otherwise.

If we return now to our integral we see that it is equal to

P
M1;...;M6;N1;N2;N3 AN

p�M1s . . . p�M6ðs�5Þp�N1ðs�6Þp�N2ðs�7Þp�N3ðs�8Þð3:17Þ

Ð
ða;b; cÞ

Z1ðM1;NÞZ2ðM2;NÞZ3ðM3;NÞ
P
M

Z1ðM;NÞðp�M � p�ðMþ1ÞÞ
� �3

Z1ðM4;NÞZ2ðM5;NÞZ3ðM6;NÞjdaj jdbj jdcj:

4. Integrating by parts: the bottom

To calculate the integral over the matrix for the centre, we shall need to know the
value of
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aA;B; ~BB;C;E;N1;N2
¼ m

ða; b; cÞ A Z3p : vðaÞ ¼ A; vðbÞ ¼ B; vð~bbÞ ¼ ~BB; vðcÞ ¼ C;

v
�
�~bb3 � ðcpN1Þ2pN1þN2 þD~bbðpN1þN2Þ2

�
¼ E

( )
:

It will su‰ce to prove the following although our analysis provides precise informa-
tion about the linear functions and inequalities involved:

Proposition 4.1. There exists a finite partition
S
i AS

Yi of R7 defined by linear inequal-

ities with coe‰cients in Q and for each i A S, polynomials PiðXÞ and QiðX Þ and linear func-
tion aiðxÞ and biðxÞ such that if D ¼ ðA;B; ~BB;C;E;N1;N2Þ A N7XYi then

aD ¼ aA;B; ~BB;C;E;N1;N2
¼ PiðpÞpaI ðDÞ þQiðpÞjEðFpÞjpbI ðDÞ:

Proof. Recall ~bb ¼ ac� pN2b. We can do this bit by parts by first fixing ~bb and c and
calculating the measure of the corresponding a:

m
�
ðb=cþ pN2�CZpÞX pAZ�

p

�
¼

0 if B3AþC and N2�C >minðA;B�CÞ;
p�Að1� p�1Þ if B3AþC and N2�CeminðA;B�CÞ;
pC�N2 if B ¼ AþC and AþC < N2;

p�A if B ¼ AþC and AþC < N2:

8>>><
>>>:

Then

m
ða; b; cÞ A Z3p : vðaÞ ¼ A; vðbÞ ¼ B; vð~bbÞ ¼ ~BB; vðcÞ ¼ C;

v
�
�~bb3 � ðcpN1Þ2pN1þN2 þD~bbðpN1þN2Þ2

�
¼ E

( )

¼ m
�
ðb=cþ pN2�CZpÞX pAZ�

p

�
pN2 � m

ð~bb; cÞ A Z2p : vð~bbÞ ¼ ~BB; vðcÞ ¼ C;

v
�
�~bb3� ðcpN1Þ2pN1þN2 þD~bbðpN1þN2Þ2

�
¼ E

( )
:

Hence it su‰ces to calculate the measure of

m
�
ðb; cÞ A Z2p : vðbÞ ¼ B; vðcÞ ¼ C; v

�
�b3 � ðcpN1Þ2pN1þN2 þDbðpN1þN2Þ2

�
¼ E

	
ð4:1Þ

where now we write b for ~bb and B for ~BB to avoid too much notation.

The measure in (4.1) is the same as

pN1m
�
ðb; cÞ A Z2p : vðbÞ ¼ B; vðcÞ ¼ C þN1; v

�
�b3 � c2pN1þN2 þDbðpN1þN2Þ2

�
¼ E

	
:

Let N1 þN2 ¼ N.

We run over three cases: (1) N eB;C; (2) B < N, BeC; (3) C < B;N.

(1) N eB;C. We make a transformation b 0 ¼ b=pN and c 0 ¼ c=pN :

mfðb; cÞ A Z2p : vðbÞ ¼ B; vðcÞ ¼ C; vð�b3 � c2pN þDbp2NÞ ¼ Eg

¼ p�2Nmfðb 0; c 0Þ A Z2p : vðb 0Þ ¼ B�N; vðc 0Þ ¼ C�N; vð�b 03 � c 02 þDb 0Þ ¼ E � 3Ng:
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We need to calculate a value for

cB;C;E ¼ mfðb; cÞ A Z2p : vðbÞ ¼ B; vðcÞ ¼ C; vð�b3 � c2 þDbÞ ¼ Eg

(where we have replaced b 0; c 0 by b and c).

If we put

dB;C;E ¼ mfðb; cÞ A Z2p : vðbÞ ¼ B; vðcÞ ¼ C; vð�b3 � c2 þDbÞfEg

then cB;C;E ¼ dB;C;E � dB;C;Eþ1.

We shall suppose that p3 2.

Lemma 4.2. (1) If EeminfB; 2Cg then dB;C;E ¼ p�Cp�Bð1� p�1Þ2.

(2) If B3 0 and minfB; 2Cg < E then dB;C;E ¼ 0 unless B ¼ 2C when

dB;C;E ¼ p�Ep�Cð1� p�1Þ.

(3) If B ¼ 0 then if 1eEe 2C we have d0;C;E ¼ 2p�Ep�Cð1� p�1Þ.

(4) If B ¼ 0 then d0;0;E ¼ pE�1d0;0;1 ¼ pE�1
�
jEðFpÞj � 1

�
.

Proof. (1) is clear. When B3 2C, (2) follows since we can’t get any solutions. (3)
forces the value of b ¼G1 mod pE . The remaining cases depend on the following quanti-
tative version of Hensel’s lemma applied to the non-singular curve E ¼ Y 2 þ X 3 �DX :

Lemma 4.3. Let Ef 1, p3 2. Let ðb; cÞ A Z=pEZ with �b3 � c2 þDb ¼ 0 mod pE .
Then there exist exactly p elements ðb1; c1Þ A Z=pEþ1Z with b1 b1; c1 c1 mod p

E and

�b31 � c21 þDb1 ¼ 0 mod pEþ1.

Proof. Put b1 ¼ bþ bpE and c1 ¼ cþ gpE . We are required to count how many

pairs ðb; gÞ A f0; . . . ; p� 1g2 there are satisfying:

�b31 � c21 þDb1 ¼ 0 mod pEþ1:ð4:2Þ

We know that �b3 � c2 þDb ¼ tpE for some t. Hence expanding the equation (4.2)
and pulling out the common power of pE we have to solve:

tþ bðD� 3b2Þ � 2gc ¼ 0 mod p:

If c ¼ 0 mod p then bðD� b2Þ ¼ 0 mod p which implies that D� 3b23 0 mod p (as-
suming p3 2Þ. Hence we get exactly p lifts to solutions ðb1; c1Þ. This completes Lemma
4.3.

This lemma implies that whenever E > B;C; 0 then dB;C;Eþ1 ¼ p�1dB;C;E :

If B ¼ 2C < E (B ¼ 2C ¼ E is already covered) then d2C;C;E ¼ p�Eþð2Cþ1Þd2C;C;2Cþ1.
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If C > 0 then d2C;C;2Cþ1 ¼ p�Cp�ð2Cþ1Þð1� p�1Þ since once c is determined this forces the
value of b mod p2Cþ1.

If B ¼ 0 then d0;0;E ¼ pE�1d0;0;1 ¼ pE�1
�
jEðFpÞj � 1

�
. This completes the proof of

Lemma 4.2.

Hence we can determine dB;C;E once we know jEðFpÞj.

(Note that although E ¼ Y 2 þ X 3 �DX is non-singular, it does not have normal
crossings with the varieties X ¼ 0 and Y ¼ 0. We can see the normal crossing issue here in
a di¤erence between dBþ1;C;Eþ1 and dB;Cþ1;Eþ1 and their relationship to dB;C;E . Namely
dB;Cþ1;Eþ1 ¼ p�2dB;C;E whilst for example d2Cþ2;Cþ1;Eþ1 ¼ p�2d2C;C;E .)

(2) B < N, BeC. Using a transformation b 0 ¼ pN=b and c 0 ¼ c=b it will su‰ce by
the same analysis as in case 1 to calculate a value for

dB;C;E ¼ mfðb; cÞ A Z2p : vðbÞ ¼ B; vðcÞ ¼ C; vð�13 � c2bþDb2ÞfEg

in the case that Bf 1 and Cf 0.

Since Bf 1 the following lemma is clear:

Lemma 4.4. dB;C;E ¼ 0 unless E ¼ 0 in which case dB;C;E ¼ p�B�Cð1� p�1Þ2.

(3) C < B;N. Using a transformation b 0 ¼ b=c and c 0 ¼ pN=c it will su‰ce to cal-
culate for B;C > 0:

dB;C;E ¼ mfðb; cÞ A Z2p : vðbÞ ¼ B; vðcÞ ¼ C; vð�b3 � cþDbc2ÞfEg:

Lemma 4.5. Suppose B;C > 0. Then

(1) if Eeminf3B;Cg then dB;C;E ¼ p�C�Bð1� p�1Þ2;

(2) if 3B3C and minf3B;Cg < E then dB;C;E ¼ 0;

(3) if 3B ¼ C then dB;3B;E ¼ p�E�Bð1� p�1Þ.

Proof. (1) and (2) are clear. (3) follows from the quantitative version of Hensel’s
Lemma for the non-singular curve �X 3 � Y þDXY 2:

Lemma 4.6. Let Ef1, p32. Let ðb; cÞ A Z=pEZ with �b3� cþDbc2 ¼ 0 mod pE .
Then there exist exactly p elements ðb1; c1Þ A Z=pEþ1Z with b1 b1; c1 c1 mod p

E and

�b31 � c1 þDbc21 ¼ 0 mod pEþ1.

Proof. Put b1 ¼ bþ bpE and c1 ¼ cþ gpE . We are required to count how many

pairs ðb; gÞ A f0; . . . ; p� 1g2 there are satisfying:

�b31 � c1 þDbc21 ¼ 0 mod pEþ1:ð4:3Þ
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We know that �b3 � cþDbc2 ¼ tpE for some t. Hence expanding the equation (4.3)
and pulling out the common power of pE we have to solve:

tþ bðDc2 � 3b2Þ � 2gð�1þ 2DbcÞ ¼ 0 mod p:

If Dc2 � 3b2 ¼ 0 then 2Dbc2=3� c ¼ cð2Dbc=3� 1Þ ¼ 0. So 2Dbc� 13 0 assuming
p3 2. Hence we get exactly p lifts to solutions ðb1; c1Þ. This completes the proof of Lemma
4.6.

This lemma implies that whenever E > B;C; 1 then dB;C;Eþ1 ¼ p�1dB;C;E .

If Eeminf3B;Cg then dB;C;E ¼ p�Cp�Bð1� p�1Þ2.

If 3B3C and minf3B;Cg < E then dB;C;E ¼ 0.

So the only interesting case is dB;3B;E . Our lemma implies that

dB;3B;E ¼ p�Eþð3Bþ1ÞdB;3B;3Bþ1 ¼ p�Eþð3Bþ1Þp�Bp�ð3Bþ1Þð1� p�1Þ ¼ p�E�Bð1� p�1Þ:

Remark 1. Note that the case distinction in (1), (2) and (3) reflects a blow-up of the
variety �b3 � c2nþDbn2 at the singular point ð0; 0; 0Þ. Each case distinction represents the
image of the variety in the three separate charts that define the blow-up.

The above analysis su‰ces to prove Proposition 4.1.

We now return to the proof of Theorem 2.2. We combine the expressions for
Z1ðM1;NÞ, Z2ðM2;NÞ, Z3ðM3;NÞ, the analysis of aA;B; ~BB;C;E;N1;N2

with equation (3.17).

Together they imply that there exists a finite partition
S
i AS

Yi of R14 defined by linear in-

equalities with coe‰cients in Q and for each i A S, polynomials PiðX Þ and QiðX Þ and
linear function aiðxÞ, biðxÞ, giðxÞ and diðxÞ such that for p coprime to 2D, putting
L ¼ ðA;B; ~BB;C;E;M1; . . . ;M6;N1;N2;N3Þ,

z/LðEÞ;pðsÞ ¼
P
i AS

P
L AN14XYi

PiðpÞpaiðLÞþgiðLÞs þQI ðpÞjEðFpÞjpbiðLÞþdiðLÞs:

Proposition 2.3 implies then that there exist two rational functions P1ðX ;YÞ and
P2ðX ;Y Þ A QðX ;YÞ such that for p coprime to 2D:

z/LðEÞ;pðsÞ ¼ P1ðp; p�sÞ þ jEðFpÞjP2ðp; p�sÞ:

Hence Theorem 2.2 is proved.

5. Motivic zeta functions

In this section we show how to use the zeta function of a group to canonically as-
sociate to the group a subring of the Grothendieck ring. In particular we show why the
elliptic curve E ¼ y2 þ x3 �Dx is canonically associated to GðEÞ.
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Let us recall the definition of the Grothendieck ring M of algebraic varieties over a
field k. This is the ring generated by symbols ½S �, for each S an algebraic variety over k,
with the relations

(1) ½S � ¼ ½S 0� if S is isomorphic to S 0;

(2) ½S � ¼ ½SnS 0� þ ½S 0� if S 0 is closed in S; and

(3) ½S 
 S 0� ¼ ½S �½S 0�.

We denote by L ¼ ½A1
k� the Lefschetz motive.

It is tempting given an expression (valid for almost all p)

zG;pðsÞ ¼
P
IHT

cI ðpÞWI ðp; p�sÞ

where

cI ðpÞ ¼ cardfa A YðFpÞ: a A EiðFpÞ if and only if i A Ig

to associate the subring of the Grothendieck ring generated by the varieties. But how ca-
nonical or unique is this? In general it is not unique. It is possible to have non-isomorphic
varieties with the same number of points mod p. For example, suppose that calculating
z/GðEÞ;pðsÞ by an alternative method we produce a formula of the form

z/GðEÞ;pðsÞ ¼ P 0
1ðp; p�sÞ þ jE 0ðFpÞjP 0

2ðp; p�sÞ

where E 0 is another elliptic curve. Then it does not mean that E and E 0 are isomorphic—
distinct varieties over Q may have the same number of points in Fp. In fact this is the case
if the elliptic curves E and E 0 are isogenous. Much deeper is the fact, due to Faltings [6],
that if, for almost all primes p, jEðFpÞj ¼ jE 0ðFpÞj then E and E 0 are isogenous. Isogenous
elliptic curves define the same Chow motive. Therefore even without appealing to the for-
malism of motivic zeta functions, we may deduce:

Theorem 5.1. The Chow motive of E is canonically associated with GðEÞ.

However by using recent work with Loeser [5] on the concept of a motivic zeta func-
tion we can in fact show that E is canonically associated to GðEÞ. In [5] we define a motivic
zeta function associated to a Z-Lie algebra. This is a power series with coe‰cients in the
Grothendieck ring of algebraic varieties.

Let L be a Lie algebra over Z. Let XeðkÞ (respectively X/ðkÞÞ denote the class
of k½½t��-subalgebras (respectively ideals) of Ln k½½t�� where k is a finite extension of Q.
Let AnðX�ÞðkÞ denote the set of subalgebras or ideals in X�ðkÞ of codimension n in
Ln k½½t��. It is shown in [5] why AnðX�Þ is a constructible set of the Grassmannian
GrðLn k½½t��=tnLn k½½t��Þ and hence ½AnðX�Þ� defines an element of the Grothendieck
ring. The motivic zeta function encodes the subalgebras or ideals of Ln k½½t�� and is de-
fined as follows:

Sautoy, Subgroups in nilpotent groups 17

Brought to you by | Sackler Library
Authenticated | 129.67.119.180
Download Date | 9/3/12 5:03 PM



P�
LnQ½½t��ðTÞ ¼

Py
n¼0

½AnðX�Þ�T n A M½½T ��:

Denote byMloc the ringM½L�1� obtained by localization and define byM½T �loc the
subring ofMloc½½T �� generated byMloc½T � and the series ð1� LaT bÞ�1 with a A Z and b A N.
It was shown in [5] that the power series P�

LnQ½½t��ðTÞ is a rational function belonging to
M½T �loc. LetL be the subring ofM generated by the Lefschetz motive L.

We make the following:

Definition 5.2. The space of varieties MeðLÞ (respectively M/ðLÞ) of L counting

subalgebras (respectively ideals) is defined to be the smallestL-submodule ofM containing
the coe‰cients ½AnðX�Þ�.

The rationality of P�
LnQ½½t��ðTÞ implies that this module is in fact finitely generated.

In [5] it is shown that by ‘‘taking the trace of Frobenius’’ of the motivic zeta function
of P�

LnQ½½t��ðTÞ that one can recover the local zeta functions z�LnZp
ðsÞ for almost all primes.

Let us explain this in more detail. For any variety X over Q, one can choose a model X of
X over Z, and consider the number of points npðXÞ of the reduction of X modulo p, for p a
prime number. Of course, for some prime numbers p, npðX Þ may depend of the model X,
but, for a given X , the numbers npðX Þ are well defined for almost all p. If we denote by P
the set of all primes, the sequence npðXÞ is well defined as an element of the ring ZP0, where,
for any ring R, we set RP0 :¼

Q
p AP

R=
L
p AP

R. Moreover, counting points being additive for

disjoint unions and multiplicative for products, the sequence npðXÞ in ZP0 only depends
on the class of X in M and may be extended to a ring morphism n:M ! ZP0. Setting
npðL�1Þ ¼ 1=p, one may extend uniquely n to a ring morphism n:Mloc ! QP0.

What is the relationship then betweenM�ðLÞ and the varieties that we have to count
points on mod p to calculate z�LnZp

ðsÞ?

Let Ei (i A T , T finite) be the subvarieties arising from the resolution of singularities
of the polynomial FLðX Þ associated to a presentation of L that arose in proving the explicit
expression for z�LnZp

ðsÞ in [4]. (Note that the polynomial FLðX Þ depends on a choice of
presentation for L and we also have a choice in the resolution we take in general.) As
proved in [5] the proof of the explicit formula in [4] translates into an explicit expression for
P�
LnQ½½t��ðTÞ of the same form

P�
LnQ½½t��ðTÞ ¼

P
ILT

½E�
I �WI ðL;TÞ

where WIðX ;Y Þ A QðX ;YÞ are rational functions, and EI ¼
T
i A I

Ei and E�
I ¼ EIn

S
j ATnI

Ej.

When I ¼ j, we have Ej ¼ Y . Note however that the definition of P�
LnQ½½t��ðTÞ is indepen-

dent of any choices made in the calculation.

HenceM�ðLÞ is contained in the L-submodule generated by the varieties Ei ði A TÞ
which arise from a resolution of singularities of the polynomial FLðX Þ defined from a pre-
sentation for L.
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For the Lie algebra LðEÞ one can follow the calculation above for z/LðEÞnZp
ðsÞ to show

that it formally translates into the same result for the motivic zeta function of LðEÞ:

Theorem 5.3. P/
LðEÞnQ½½t��ðTÞ ¼ P1ðL;TÞ þ ½E�P2ðL;TÞ.

Corollary 5.4. M/
�
LðEÞ

�
is the L-submodule generated by ½E �. The elliptic curve ½E �

is canonically associated with LðEÞ and hence GðEÞ.

In [3] we analysed the subalgebras of index p3 in LðEÞ to show that ze

LðEÞnZp
ðsÞ is also

not finitely uniform. Although the conditions are little more complex, I would conjecture
the following:

Conjecture 5.5. There exist two rational functions P1ðX ;YÞ and P2ðX ;YÞ A QðX ;Y Þ
such that for almost all primes p:

ze

LðEÞ;pðsÞ ¼ P1ðp; p�sÞ þ jEðFpÞjP2ðp; p�sÞ

and

Pe

LðEÞnQ½½t��ðTÞ ¼ P1ðL;TÞ þ ½E�P2ðL;TÞ:

Hence Me
�
LðEÞ

�
is the additive subgroup generated by ½E � and the Lefschetz motive L.

The method of considering minors of matrices developed in section 3 certainly has
some prospect for generalization. It seems likely that it will provide the key for example to
determining for a general class two nilpotent group or Lie algebra a candidate for the
smallest subring of the Grothendieck ring required to express the associated motivic zeta
function counting ideals or normal subgroups. In other words, to count these ideals or
normal subgroups can be reduced to counting points on the varieties from a resolution of
singularities of the polynomial defined by a product of the minors of these matrices.

Also the method of constructing a presentation of a Lie algebra from the determinants
of certain matrices seems also ripe for generalization. For example, suppose that we have
a varietyV defined as the solution set of a homogeneous polynomial f ðX1; . . . ;XnÞ A Z½X � of
degree r. Suppose we can define an r
 r matrix

�
gijðX Þ

�
where gijðX Þ are linear poly-

nomials with coe‰cients in Z with the property that

f ðX1; . . . ;XnÞ ¼ det
�
gijðX Þ

�
:

Define a Lie algebra

LðVÞ ¼ hA1; . . . ;Ar;B1; . . . ;Br;X1; . . . ;Xn: ½Ai;Bj� ¼ gijðX Þi

where all other commutators are zero. Then the analysis above suggests that M/
�
LðVÞ

�
should contain the variety ½V �. However it is also likely to contain all the varieties defined
by the various minors of

�
gijðX Þ

�
. The other point to bare in mind is of course that there

is the possibility that cancelling of varieties might occur which could see the variety V dis-
appear.

This at least raises the interesting problem:
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Problem. Let f ðX1; . . . ;XnÞ A Z½X � be a homogeneous polynomial. Does there exist
an r
 r matrix

�
gijðX Þ

�
where gijðX Þ are linear polynomials with coe‰cients in Z with the

property that

f ðX1; . . . ;XnÞ ¼ det
�
gijðX Þ

�
?

Does there exist an m
m matrix
�
gijðX ;ZÞ

�
where gijðX ;ZÞ are linear polynomials with

coe‰cients in Z with the property that

Zm�rf ðX1; . . . ;XnÞ ¼ det
�
gijðX ;ZÞ

�
?

The second question allows us some more flexibility and we can define an associated
Lie algebra:

Lð f Þ ¼ hA1; . . . ;Am;B1; . . . ;Bm;X1; . . . ;Xn;Z: ðAi;BjÞ ¼ gijðX ;ZÞi:

Note that the elliptic curves we have considered of the form E ¼ y2 þ x3 �Dx all
have complex multiplication. If you would like an example of a nilpotent group which in-
volves counting points mod p on an elliptic curve without complex multiplication, for ex-
ample E ¼ y2 þ yþ x3 � x, I would conjecture the following:

Conjecture 5.6. Let G be the nilpotent group with presentation:

GðEÞ ¼ x1; x2; x3; x4; x5; x6; y1; y2; y3: ½x1; x4� ¼ y3; ½x1; x5� ¼ y1; ½x1; x6� ¼ y2;

½x2; x4� ¼ y1; ½x2; x5� ¼ y3; ½x3; x4� ¼ y2y3; ½x3; x6� ¼ y1

� �
:

Then there exist two non-zero rational functions P1ðX ;YÞ and P2ðX ;YÞ A QðX ;Y Þ such that
for almost all primes p:

z/GðEÞ;pðsÞ ¼ P1ðp; p�sÞ þ jEðFpÞjP2ðp; p�sÞ

where E is the elliptic curve E ¼ y2 þ yþ x3 � x without complex multiplication.

Note that the associated Lie algebra has a presentation

LðEÞ ¼ x1; x2; x3; x4; x5; x6; y1; y2; y3: ðx1; x4Þ ¼ y3; ðx1; x5Þ ¼ y1; ðx1; x6Þ ¼ y2;

ðx2; x4Þ ¼ y1; ðx2; x5Þ ¼ y3; ðx3; x4Þ ¼ y2 þ y3; ðx3; x6Þ ¼ y1

� �

and

det
�
ðxi; x3þjÞ

�
¼ �ðy22y3 þ y2y

2
3 þ y31 � y1y

2
3Þ:
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