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Analytic properties of zeta
functions and subgroup growth

By MARCUS DU SAUTOY and FRITZ GRUNEWALD

1. Introduction

It has become somewhat of a cottage industry over the last fifteen years to
understand the rate of growth of the number of subgroups of finite index in a
group G. Although the story began much before, the recent activity grew out
of a paper by Dan Segal in [36]. The story so far has been well-documented in
Lubotzky’s subsequent survey paper in [30].

In [24] the second author of this article, Segal and Smith introduced the
zeta function of a group as a tool for understanding this growth of subgroups.
Let a,,(G) be the number of subgroups of index n in the finitely generated group
G and sy(G) = a1(G) + - - - + an(G) be the number of subgroups of index N
or less. The zeta function is defined as the Dirichlet series with coefficients
a,(G) and has a natural interpretation as a noncommutative generalization of
the Dedekind zeta function of a number field:

(1.1) Cals) = Y an(Gn
n=1
= > |G:H|™"
H<G

For example, without such a tool it would be difficult to prove that the
number of subgroups in the rank-two free abelian group G = Z? grows as
follows:

sn(22) ~ (n?/12) N2

as N tends to infinity. (Here f(n) ~ g(n) means f(n)/g(n) tends to 1 as n
tends to infinity.) This is a consequence of the expression for the zeta function
of the free abelian group of rank d:

Cza(s) = ((s)---C(s —d +1)

where ((s) is the Riemann zeta function.
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The zeta function (1.1) defines an analytic function on some right half
of the complex plane R(s) > «(G) precisely when the coefficients a,(G) are
bounded by a polynomial. A characterization of such finitely generated resid-
ually finite groups, groups of polynomial subgroup growth, was provided by
Lubotzky, Mann and Segal [31]. They are groups which have a subgroup of
finite index that is soluble of finite rank.

In this paper we consider the analytic behaviour of the zeta function of
the subclass of finitely generated nilpotent groups. This class of groups has
the added bonus that their zeta functions satisfy an Euler product (see [24]):

Ca(s) = HCG,p(S)
P
where the local factors for each prime p are defined as:

Cop(s) =D ap (G)p™"™.
n=0

It was also proved in [24] that if the nilpotent group is torsion-free then these
local factors are all rational functions in p~®. However the proof gave little
understanding of how these rational functions varied as p varied and was not
sufficient to understand the global behaviour of (g (s).

In this paper we introduce some new methods to understand the analytic
behaviour of the zeta function of a group. We can then combine this know-
ledge with suitable Tauberian theorems to deduce results about the growth of
subgroups in a nilpotent group. In order to state our results we introduce the
following notation. For o« € R and N € N, define

N
sy (GQ) = Z atz(f)
n=1

We prove the following:

THEOREM 1.1. Let G be a finitely generated nilpotent infinite group.

(1) The abscissa of convergence a(G) of (g(s) is a rational number and
Cc(s) can be meromorphically continued to R(s) > a(G) —  for some § > 0.
The continued function is holomorphic on the line R(s) = (a)G except for a
pole at s = a(G).

(2) There exist a nonnegative integer b(G) € N and some real numbers
¢, € R such that

sn(G) ~ ¢ NG (1og N)Y@

NG ~ ¢ (log N)HDH
for N — oc.

Whether the abscissa of convergence is a rational number was raised as
one of the major open problems in the field in Lubotzky’s survey article [30].
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Note that the integer b(G) + 1 is the multiplicity of the pole of (g (s) at
s = a(G). In [13] several examples are given where this multiplicity is greater
than one. For example, the zeta function of the discrete Heisenberg group

1 Z 7
G=|0 1 Z
0 0 1

has the following expression:

Ca(s) = C(s)¢(s = 1)¢(2s — 2)¢(25 — 3) - ((3s —3) .

The double pole at s = 2 implies that the growth of subgroups is:

e

2¢(3)

for N — oo. This was first observed in Smith’s thesis [37]. This example has

sn(Q) N%log N

meromorphic continuation to the whole complex plane. In [22] it is shown that
this is also true for any finite extension of a free abelian group. In general,
though, these functions have natural boundaries as discussed in [13]. However
we have introduced in a separate paper [16] the concept of the ghost zeta
function which does tend to have meromorphic continuation.

The proof of the meromorphic continuation of the zeta function of a nilpo-
tent group depends on showing a more general result which holds for any zeta
function which can be defined as an Euler product over primes p of cone inte-
grals over Q.

Definition 1.2. (1) Let ¥ (x) be a formula in the first order language (in
the sense of logic) for the valued field @@, built from the following symbols:
+ (addition), - (multiplication), | (here x|y means v(xz) < v(y)), for every
element of @, a symbol denoting that element, =, A (and), V (or), ™ (not),
and quantifiers 3z (there exists x € Q) :) and Vz (for every z € Q) :).

The formula 1(x) is called a cone condition over Q if there exist nonzero

polynomials f;(x),g;(x)(i = 1,...,1) over Q in the variables x = x1,...,zy,
such that 1(x) is a conjunction of formulas

v(fi(x)) < v(gi(x))
fori=1,...,1.

(2) Given a cone condition 1 (x) over Q and nonzero polynomials fo and
go with coefficients in QQ, we call an integral

Zo(s.p) = [ F0()[* L9020 |da

Vp={xezZm)(x) is valid}

a cone integral defined over Q, where |dx| is the normalized additive Haar
measure on Zy' and D = {fo, 90, f1,91,---, fi,91} is called the cone integral
data.
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(3) We say that a function Z(s) is defined as an Euler product of cone
integrals over Q with cone integral data D if

Z26)=2p(s)=  [I (a4 Zn(s.p))
p prime, a, 070
where a0 = Zp(oo,p) is the constant coefficient of Zp(s,p); i.e., we normalize
the local factors to have constant coefficient 1.

We shall explain during the course of the analysis of cone integrals why
ap,0 7 0 for almost all primes p.

In Section 5 we show that for a nilpotent group G, (¢ (s) = Zp(s—d)-P(s)
where Zp(s) is defined as an Euler product of cone integrals over Q, P(s) =
[lyes Po(p~°) where S is a finite set of primes, F,(X) is a rational function
and d is the Hirsch length of G. (The Hirsch length is the number of infinite
cyclic factors in a composition series for G.)

We adapt some ideas of Denef introduced in [5] to give an explicit expres-
sion for a cone integral, valid for almost all primes p in terms of the resolution
of singularities (Y, h) of the polynomial F(x) = [T'_, fi(x)gi(x). In particular
we show:

THEOREM 1.3.  Let (Y, h) be a resolution over Q for F(x) = [Tiq fi(x)g:i(x)
and let E;,i € T, be the irreducible components of the reduced scheme (h_l(D))red

over Spec(Q) where D :Spec(%) . Then there exist rational functions Pr(x,y)

€ Q(x,y) for each I C T with the property that for almost all primes p

(1.2) Zp(s,p) =Y cprPr(p,p~)
cr

where
cp1 = card{a € Y(F,) : a € E; if and only if i € I}

and Y means the reduction mod p of the scheme Y.

The F; are smooth quasiprojective varieties defined over (Q and we can
use the Lang-Weil estimates for the number of points on such varieties mod p
to identify the abscissa of convergence of the global zeta function Zp(s).

However just knowing the shape of the zeta function from the expression
(1.2) is not sufficient to infer that the Euler product of these expressions can
be meromorphically continued beyond its region of convergence. For example,

p—l—s
(1.3) p pl;[me (1 + ) _p_s)>

converges for $(s) > 0 but has R(s) = 0 as a natural boundary. We give
instead a subtler expression for the cone integrals. Rather than a sum over
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the subsets of T, the indexing set of the irreducible components, this second
expression is a sum over the open simplicial pieces of a natural polyhedral cone
that one associates to the cone condition .

THEOREM 1.4.  There exist a closed polyhedral cone D in RL, where
t = card T and a simplicial decomposition into open simplicial pieces denoted
by Ry where k € {0,1,...,w}. Let Ry = (0,...,0) and Ry, ..., R, be the one-
dimensional pieces. For each k € {0,1,...,w} let My C {1,...,q} denote
those one-dimensional pieces in the closure Ry, of Ry,. Then there exist positive
integers Aj;, Bj for j € {1,...,q} such that for almost all primes p
w —(Ajs+Bj)

14 ZpGp) =S (- e [[ 2

k=0 JjeMy (1 —p_(AjsJ’Bj))

where ¢y, 1, 15 as defined in Theorem 1.3 and I}, is the subset of T' defined so
that i € T\I if and only if the i'" coordinate is zero for all elements of Ry,.

This expression (1.4) motivates the name cone integral. An explicit ex-
pression is given for the integers A; and Bj in terms of the numerical data of
the resolution. It is contained in the proof of this theorem which appears in
Section 3. At the end of Section 3 we also give an expression for the rational
functions of cone integrals at primes with bad reduction, which shows that they
are not far from the expression in (1.4). In particular, the local poles at bad
primes are a subset of the candidate poles —B;/A;, j € {1,...,q} provided by
the expression (1.4) for good primes.

With this combinatorial expression in hand, we can show that the patholo-
gies of examples like (1.3) do not arise. In particular, we show that the abscissa
of convergence of the global zeta function is determined by the terms in the
expression (1.4) corresponding to the one-dimensional edges Rj,...,R,;. We
then show how to use Artin L-functions to analytically continue a function

like
p—S
l+cepn———=
H < P —p‘s)>
p prime
beyond its region of convergence. We can then use various Tauberian theorems

to estimate the growth of the coefficients in the Dirichlet series expressing
Zp(s). In particular we prove the following:

THEOREM 1.5.  Let Z(s) be defined as an Euler product of cone inte-
grals over Q. Then Z(s) is expressible as a Dirichlet series > o2 i apn™* with
nonnegative coefficients a,. Suppose that Z(s) is not the constant function.

(1) The abscissa of convergence v of Z(s) is a rational number and Z(s)

has a meromorphic continuation to R(s) > a—4d for some & > 0. The continued
function is holomorphic on the line R(s) = a except for a pole at s = a.
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(2) Let the pole at s = « have order w. Then there exist some real numbers
¢, € R such that

ai+ag+---+ay ~ c-]\fo‘(logN)”’_1
ai + a2 %+ +ayN* ~ - (logN)"
for N — oc.

One of the key problems in this area was to link zeta functions of groups
up to questions in some branch of more classical number theory. We restate
Theorem 1.3 explicitly for groups as it provides just such a path from zeta
functions of groups to the more classical question of counting points mod p on
a variety. The path is quite explicit. We define in Section 5 a polynomial Fg
over Q associated to each nilpotent group G.

THEOREM 1.6. Let G be a finitely generated nilpotent group. Let (Y, h)
be a resolution over Q for the polynomial Fg. Let E;,i € T be the irreducible
components of the reduced scheme (h™(D))ea associated to h™'(D) where

D = Spec (%) Then there exist rational functions Pr(x,y) € Q(x,y) for

each I C T with the property that for almost all primes p
Cap(s) =D cpiPr(p.p™™)

where Icr
cp1 = card{a € Y(F,) : a € E; if and only if i € I}

and Y means the reduction mod p of the scheme Y.

The behaviour of the local factors as we vary p is one of the other major
problems in the field. For example in the Heisenberg group with entries from
a quadratic number field, the behaviour of the local factors depends on how
p behaves in the number field [24]. Our explicit formula however takes the
subject away from the behaviour of primes in number fields to the problem of
counting points mod p on a variety, a question which is in general wild and
far from the uniformity predicted by all previous examples (see [24] and [15]).
Two papers [11] and [12] by the first author contain an example of a class two
nilpotent group of Hirsch length 9 whose zeta function depends on counting
points mod p on the elliptic curve y? = 2°® — .

Given a nilpotent group G it is possible to construct and analyse the
polynomial Fg in question. For example, in the free abelian group or the
Heisenberg group, the polynomial does not require any resolution of singular-
ities, as D in this case only involves normal crossings. Hence the E;,¢ € T,
in this case are just the irreducible components of the algebraic set Fg = 0.
However this is not true in general. For example the class two nilpotent group
defined using the elliptic curve mentioned above has an Fg whose singularities
are not normal crossings and which therefore require some resolution.
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We have put the emphasis in this introduction on applying these cone
integrals to the question of counting subgroups in nilpotent groups; however
our results extend in a number of other directions.

(1) Variants of our zeta functions have been considered which count only
subgroups with some added feature, for example normal subgroups. Define

an(G) = card{H : H is normal subgroup of G and |G : H| = n},

n
G(s) = D an(Gn~".
Our theorems hold for this normal zeta function and many of the other variants.

(2) Let L be a ring additively isomorphic to Z¢. Define

an(L) = card{H : H is a subring of L and |L : H| = n},
an(L) = card{H : H is an ideal of L and |L : H| = n}.

n

Zeta functions of L were also defined in [24] as the Dirichlet series

Cr(s) = Zan(L)n_S,
Ci(s) = D an(L)n~.

It was pointed out in [24] that these zeta functions have an Euler product; as
for the case of nilpotent groups:

CL(s) = T ¢eez(s)
p prime

¢its) = I Cloz,(s)

p prime

Unlike the situation for groups, there is no need to make an assumption of
nilpotency in the case of rings. We can therefore consider examples like L =
sl3(Z) or the Z-points of any simple Lie algebra of classical type. We then get
the following:

THEOREM 1.7. Let L be a ring additively isomorphic to Z¢. Then there
exist some rational number a(L) € Q, a nonnegative integer b(L) € N and
some real numbers ¢, € R such that (1(s) has abscissa of convergence (L)
and

sv(L) = a1(L)+as(L)+ -+ an(L) ~c- N*E) (log N)PE)
sWUL) = a(L) +ax(D)27 P 4 an (LN ~ e (log NP

for N — oc.

There is a similar theorem for the invariant a; (L) counting ideals.
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We actually prove this theorem as part of our proof of Theorem 1.1, mak-
ing use of the fact that for a nilpotent group G there is a Lie algebra L(G)
defined over Z with the property that for almost all primes p

Cap(8) = (@) p(9)-

This fact was established in [24]. We also use the fact that for those finite
number of primes for which this identity does not hold, we still know that
(g ,p(s) is a rational function whose abscissa of convergence coincides with that
of Cr(@)p(5)-

In [23] the first author and Ph.D. student Gareth Taylor have calculated
the zeta function of the Lie algebra sly(Z) by performing three blow-ups on the
associated polynomial Fy, )" The paper shows that our method can even be
applied to bad primes (p = 2 for sly(Z)) where the resolution of singularities
of Fy,(z) does not have good reduction. It is established in [23] that

(146-2725 —8.273%)
(1—2-2735)

Caly(2)(8) = C(5)C(5 = 1)¢(25 = 2)¢ (25 — 1)¢(3s — 1) "

Note that this example has a single pole at s = 2. This means then that the
subalgebra growth, in contrast to the 3-dimensional Heisenberg-Lie algebra, is
sn(sla(Z)) ~ ¢- N? for N — oo where ¢ = 22 - 4(22(25%(3). (This example for good
primes had been calculated previously in [10] using work of Ishai Ilani [27].
However the calculations of Ilani are heavy. The simplicity of the calculation
in [23] is a good advertisement for the practical value of the methods developed

in the current paper.)

(3) Let G be a linear algebraic group over Q. Let p : G — GL,, be a
Q-rational representation. Define the ‘local zeta function of the algebraic group
G at the representation p and the prime p’ to be

ZG,pp(s) = /G , 1detp(g)I” na(9)

where GT = p~! (p(G (Qp)) N M,, (Z,)) and p denotes the right Haar measure
on G(Qp) normalized such that pug (G (Z,)) = 1.

We define the ‘global zeta function of G at the representation p’ to be the
Euler product

ZG,p(S) = H ZG,p,p(S)-

Such zeta functions were first studied by Hey and Tamagawa in the case
that G = GLjy1 where Zg ,(s) = ((s)---((s — ). Note that this zeta function
is precisely the zeta function (z+1(s). More generally in [24] the zeta functions
Zgq p(s) are shown to count subgroups H in a nilpotent group I' with the
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property that the profinite completions are isomorphic; i.e. H =T In this case
the algebraic group G is the automorphism group of I'. A result of Bryant and
Groves shows that any algebraic group can be realised modulo a unipotent
group as the automorphism group of a nilpotent group. In [15] an explicit
expression is given for the local factors of a class of nilpotent groups in terms
of the combinatorics of the building of the algebraic group. The local zeta
functions Zg ,p(s) can be expressed in terms of cone integrals. Hence our
results apply to these zeta functions.

Although our results imply we can meromorphically continue the zeta
function Zg ,(s) past its abscissa of convergence, this zeta function in general
has a natural boundary, except for the case of G = GLj41 (see [13]). However
we have discovered a procedure which produces something we call the ghost zeta
function associated to Zg ,(s) which often turns out to have a meromorphic
continuation to the whole complex plane (see [16] and [17]).

(4) Let g(n, c,d) be the number of finite nilpotent groups of size n of class
bounded by ¢ and generated by at most d elements. In [14] the zeta function
CN(ed) = 2ome1 9(n, ¢,d)n™° is shown to be expressible as the Euler product of
p-adic cone integrals. Hence the results of this paper imply that asymptotically
g(n,c,d) behaves as follows:

g(lac7d) +g(2ac7d) —l——i—g(N,c,d) ~c- N (IOgN)b

for N — oo where @ € Q, b € N and ¢ € R. The details are explained in [9]
and [14].

(5) The Igusa zeta function of a polynomial f(x) is defined as

2(5) = [ 1461 ax].
Ly
Hence it is a particular example of a cone integral where the cone condition
is empty. The global zeta function that one can define as the Euler product
of these Igusa zeta functions (normalized to have constant coefficient 1) is a
special case of our analysis. We consider in a future paper [20] the analytic
properties of such global Igusa zeta functions and in particular that they ap-
pear to have natural boundaries in a similar fashion to the examples discussed
in [13]. In [34] Ono considered a special case of these global Igusa zeta func-
tions and established their region of convergence. He considers the case where
the polynomial f(x) is absolutely irreducible and makes use of the Lang-Weil
inequality on the number of rational points of a variety as we have. In the
special case that the hyper-surface f(x) = 0 is nonsingular, he demonstrates
some analytic continuation. Our work may be seen as a vast generalization of
Ono’s results.
The results of this paper were previously announced in [18].
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Notation

Qp denotes the field of p-adic numbers.

Z,, denotes the ring of p-adic integers.

For 2 € Q,, |z| denotes p~¥®) where v(x) is the p-adic valuation of x.
N denotes the set {0,1,2,...}.

Ns¢ denotes the set {1,2,...}.

R+ denotes the set {s € R:s > 0}.

R>( denotes the set {s € R: s> 0}.

Z,, denotes the units of Z,.

f(n) ~ g(n) means f(n)/g(n) tends to 1 as n tends to infinity.

Acknowledgements. We should like to thank Jiirgen Elstrodt for discus-
sions concerning the Tauberian theorem. We also thank Benjamin Klopsch
and Dan Segal for alerting us to the potential dangers of bad primes in ap-
plying the Tauberian theorem. The first author would like to thank the Royal
Society, the Max-Planck-Institute in Bonn and the Heinrich Heine Universitat
in Diisseldorf for support and hospitality during the preparation of this paper.

2. An explicit formula for cone integrals

In this section we give a proof of Theorem 1.3 and recall from the intro-
duction the definition of a cone integral:

Definition 2.1. (1) Call a formula 9 (x) in the first order language for
the valued field Q, a cone condition over Q if there exist nonzero polynomials
fi(x),gi(x)(t =1,...,1) over Q in the variables x = x1, ..., z,, such that ¢ (x)
is a conjunction of formulas

v(fi(x)) < v(gi(x))
fori=1,...,1

(2) Given a cone condition 1 (x) over Q and nonzero polynomials fy and
go with coefficients in QQ, we call an integral

Zo(s.p) = | Gl g0 do
Vp={xezZm(x) is valid}

a cone integral defined over Q, where |dz| is the normalized additive Haar

measure on Z," and D = {fo,90, f1,91,---, fi,qi} is called the cone integral

data.

We are going to use resolution of singularities to get an explicit formula
for such cone integrals valid for almost all primes p. We follow Section 5 of [5].
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Definition 2.2. A resolution (Y,h) for a polynomial F' over Q consists
of a closed integral subscheme Y of PIS(Q (where Xq = Spec(Q[x]) and P’&Q

denotes projective k-space over the scheme XQ) and the morphism h: Y — X

which is the restriction to Y of the projection morphism P%@ — X, such
that

(i) Y is smooth over Spec(Q);

(ii) the restriction h : Y\h™'(D) — X\D is an isomorphism (where D =
Spec ( ([ )]) C Xg); and

(iii) the reduced scheme (h™1(D));eq associated to h~'(D) has only normal
crossings (as a subscheme of Y').

Let E;, ¢ € T, be the irreducible components of the reduced scheme
(h"1(D)),oq over Spec(Q). For i € T, let N; be the multiplicity of E; in the
divisor of F o h on Y and let v; — 1 be the multiplicity of F; in the divisor of
h*(dxy N -+ - A dzy,). The (N;,v;) i € T, are called the numerical data of the
resolution (Y, h) for F.

Let us recall some necessary facts about reduction of varieties mod p.
When X = Xg = Spec(Q[x]) one defines the reduction mod p of a closed

integral subscheme Y of P%@ as follows: let X = Spec(Z[x]) and Y be the

scheme-theoretic closure of Y in P’)% . Then the reduction mod p of Y is the

scheme Y xzSpec(F,) and we denote it by Y. Let h:Y — X be the restriction
to Y of the projection morphism Pk — X@ and h:Y — X be obtained from

h by base extension.
Definition 2.3. A resolution (Y, h) for F over Q has good reduction mod p if
(1) Y is smooth over Spec(F,);

(2) Ej; is smooth over Spec(F,), for each i € T, and |J;c E; has only normal
crossings as a subscheme of Y; and

(3) E; and E; have no common irreducible components, when i # j.

Note that a resolution over Q has good reduction for almost all primes p
(see Theorem 2.4 of [5]).

Let (Y°,h°) be a resolution for the polynomial F' = Hé:o fi - gi over
Q, and p be any prime such that (Y°,h°) has good reduction mod pZ, and
H —o fi-9i # 0. Here ~ means reduction mod p . Let (Y, h) be the resolution
over Q, obtained from (Y°, h°) by base extension.



804 MARCUS DU SAUTOY AND FRITZ GRUNEWALD

Let a € Y(F,). Since we consider Y as a closed subscheme of Y ,ais
alsoaclosedpomton. Let T, :{ZET.CLGEi}:{ZGT.CLEEi} . Let
r =card T, and T, = {i1,...,%,}. Then in the local ring Oy we can write

Foh=wuc;" ¢ 7

where ¢; € Of/,a generates the ideal of /EZVJ in Of/,a and w is a unit in Oy .

)

Since f; and g; divide F' we can also write for ¢ =0,...,(
fi OE = Uf Cl (fz) ”Civir(fi)’
gioh = ugep 9. w0,

Put
Tuls.) = | oAl lgo o B A (dy A A da)
0= Ha)nh=(Vp

where we define 0 as follows: Let H = {b € Y(Q,) : h(b) € Z;'}. A point
be H C Y(Qp) can be represented by its coordinates (z1,...,Zm,%0,--.,Yk)
in Qp x Pﬁ((@p) where (z1,...,7m) € Z;" and yo,. ..,y are homogeneous
coordinates which can therefore be chosen such that min;—q _j;ordy; = 0. The
map 6 : H — Y (FF,) is then defined as follows: 6(b) = (Z1,...,Tm, Y0, -- -, k) €
Y (F,) C PE(F,).

Then Zp(s,p) =2 eV (F,) Ja(s,p). Now we have

Ja(s,p) = / g [N U Vs )iy =1
L Jo @iy

.. |CT|Nir(f0)s+Nir(go)+Vir_1 |dcl FANERRIVAN dcm| .

Since €1, . . . , Gy, belong to the maximal ideal of Oy, we have ¢1(b), ..., ¢, (b)
€ pZy, for all b € 671(a). The map

¢ o 07 a) - (pZp)"
b +—  (c1(b),...,cm(b))

is a bijection. Hence
(2.1)

Jo(s,p) = /V, |y1|Ni1 (fo)s+Niy (go)+viy —1 (fo)s+Ni,. (go)+vi,—1 |dy |-

N;
ey - | dym |

P

where V) is the set of all y = (y1,...,ym) € (pZp)™ satisfying, for i =1,...,1,

ZN,J fi)ord(y;) Z i; (gi)ord(y;).
7j=1
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Let Aj, = Ni(fo) and Bj, = N, (g90) + vi; for j = 1,...,r and
Ajq.=0,Bj,=1for j >r. Then
_Nm ws+Bia—1 _ g
Jo(s,p) = > p Bt Bk ekt
(k1 eokim) € A
e (pTim —pThn
— (1 - p—l)m p— Z;nzl kj(Aj,as+Bja)
(klv---7k7rL)€A

where A;, € N and B;, € N and

A= {(k‘l,,k‘m) S Nygo : ZNZ](fl)k‘] < ZNZ](gl)k‘] for i = 1,...,[} .
j=1 j=1

Thus A is the intersection of N2y and a rational convex polyhedral cone C in
RZ,. We can write this cone as a disjoint union of simplicial cones C1,...,C,,
of the form:

Ci ={a1va + -+ + amVim, 1 oj € Ry, for j=1,...,m;}

where {vi1,...,Vim,} is a linearly independent set of vectors in R™ with non-
negative integer coordinates and with the property that a fundamental region
of the lattice spanned by vj1, ..., vim, has no lattice point of Z™ in its interior
(see p. 123124 of [1]). Then A can be written as the disjoint union of the
following sets:

Ai:{llvil+”’+lmivimi le€N>0 forjzl,...,mi}.

Put vjr, = (¢jk1,-- -, qjkm) € N for k=1,...,m;. Hence

w My Aka s+Bk.qa,i)
D 7 7
ROV | frex s
j 1

where Ak,a,j = Zgl qjkiAi,a € N and Bk,a,j = Zgl ijiBi,a e N.
Notice that the above calculations just depended on which components
E; contained a. If T, = T,, then J,, (s,p) = Ju,(s,p). So for each I C T let

cpr = card{a € Y(F,) : a € E; if and only if i € I}

and put Ay = A ,; and By 1; = Bigj for any a € {a € Y(Fp) : a € E;
if and only if i € I} where j = 1,...,w; and wy is the number of simplicial
cones defined by the linear inequalities corresponding to I. Then we have a
final formula for Zp(s,p):

wy My Ak IJS+Bk ]])

(22) ZD(S,p) = (1 -p Z pJZ H L —(Ag,1,;5+Bk,1,5) "

ICT  j=lk= 11
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Note that if Ay 7 ; = 0 and By r; = 1, which will correspond to a bit of

the integral like fpzp |dym|, then we get (1 —p~1)- (16—;1_) which is correct.

This completes the proof of Theorem 1.3. Note that this expression (2.2)
for Zp(s,p) holds for all primes for which the resolution (Y, h) had good re-
duction.

We could also consider a cone integral defined over Q, rather than Q
whose cone data D consisted of polynomials in Q,[x]. Our formula (2.2) would
still be valid for such integrals provided that the resolution had good reduction
mod p.

Notice that, as we vary p, the only things in this formula which depend
on p are the terms ¢, ;.

We should note that there is one term which is always a constant term in
the expression for our final formula (2.2) corresponding to the subset I = (;
then wy =1, m; =m and Ay p; =0 and By, =1 for k =1,...,m. Hence
the term corresponding to the subset I = () has the following form:

(2.3)

—m

Wy Mg p—(Ak,w,jS‘i‘Bk,@,j)

_ o —1ym = —p! mip
(1 b ) Cp’@jg”};ll1—p_(Ak»‘B,j8+Bk,0,j) - Cp,@(l p ) (1_p_1)m

= cpop .
Since the restriction h : Y\h~'(D) — X\D is an isomorphism (where D =
Spec (%) C Xo)
cpp = card{a€Y(Fp):a ¢ E;forallieT}
= card X (F,) — card D(F,,).

The term (2.3) is part of the constant term of the rational function Zp(s,p).
The other parts of the constant term come from those I C T'and j € {1,...,w;s}
such that Ay ;; =0 forall k=1,...,m;.

Note that by dimension arguments for p large enough, card X (F,) >
card D(Fp). Hence ¢,y > 0 for almost all primes p and the constant term
ap, in a cone integral is nonzero for almost all primes p as promised in the
introduction. We give a lower bound for this constant in Section 4.

3. A second explicit expression for cone integrals

The explicit expression (2.2) determined in the previous section has a
number of advantages. It expresses the function as a sum over the subsets of
I which identifies precisely the bits ¢, ; which depend on p. This form of the
sum is also more amenable to Denef and Meuser’s proof that the Igusa local
zeta function (where 1) is the empty condition) satisfies a functional equation
(see [6]).
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However, for the analysis of the analytic properties of the global zeta
function, as explained in the introduction, it is preferable to work with a second
explicit formula (to be established) where the cone integrals are written as a
sum over open simplicial pieces of a single cone defined in cardT" dimensions,
where each open simplicial piece of the cone gets a weight according to the size
of I and ¢, 1.

We give a proof in this section of Theorem 1.4 where all the data in the
formula, e.g. A; and Bj, are identified explicitly in terms of the numerical data
of the resolution and the underlying cone.

The cone is defined as follows:

t

Dr =< (z1,...,m4 So: ZN fi)z Z i(gi)xj fori=1,...,1

where card T = ¢ and R>p = {# € R : > 0}; so this is a closed cone. Denote

the lattice points in D7 by Ar, i.e. A7 = Dy N N!. We can write this cone
as a disjoint union of open simplicial pieces called Ry, k = 0,1,...,w where
a fundamental region for the lattice points of Ry has no lattice points in its
interior. We shall assume that Ry = (0,...,0) and that the next ¢ pieces are
all the open one-dimensional edges in our choice of simplicial decomposition
for the cone Dp: for k=1,...,q,

Rk:{aek‘:a(qk‘ly"'aqkt):a>0}‘

Since these are all the one-dimensional edges, for any k € {0,...,w} there
exists some subset My, C {1,...,q} such that

Ry = Z ajej:aj >0 for all j € M
JeEMj,

Note that my, := card M, < t.

Define for each k = 1,. .., q the following constants:
t
(3.1) Ay = ZijN fo
B, = Zng i(90) +vj).

For each subset I C T we previously defined a rational convex polyhedral
cone C7 with lattice points A; which we broke down into simplicial cones
ci,.. Cz{u with corresponding lattice points Af, ... 7AquI- These were cones
in the open positive quadrant R7,. We are going to use the new cone Dr to

express the same rational function that we associated to Cf.
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For each I C T define:

D; = {(kzl,...,kt) €Dr:ki>0ifieland k:iZOifz'eT\I},
A; = Dj N Nt.
So Dy = Ujcr Dr, a disjoint union. The reason we chose the notation

Dy is of course because it is the closure then of Dy defined as above.
For each I C T there is then a subset W; C {0,...,w} so that

U B«

keW;r
We now have the following:
LEMMA 3.1.
m
(I—p )"c Iiﬁ L A
P, —(Ag,1,58+Bk,1,5)
j=1k=1
—(Ajs-l-Bj)
III —(m—|1]) _p
~ ol Z H 1 — p=(Ajs+B;)”
keWr JjEMy,

COROLLARY 3.2. Set ¢, = ¢p1 and Iy, = I if k € Wy. Then for all
primes p for which the resolution has good reduction,

Zo(s.p) =2 (0= D" e [ 7= sy

k=0 jEMk

Proof. We go back to the integral expression (2.1) for J,(s,p) where a €

{a € Y(Fp) : a € E; if and only if i € I}. The calculations of the previous
section gave:

wy My —(Ap.1.;5+Br 1.5)
1 p I3 2y
Ja(s,p) - (1 p ) § I I

j=1k=1

1— p—(Ak,I,jS-i-Bk,I,j) ’

We can rewrite the expression for J,(s,p) as

Ja(s,p) =p_(m“”)/V,H\zi!Ni(fO)”Ni(gO””_lH |z

piel el

where V) is now the set of (2;);c; € (pr)m satisfying for j =1,...,1

> Ni(fj)ord(z;) < Ni(gj)ord(z).

el 1€l
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By the definition of A; = D; N N! C D this then reduces to

t
Juls,p) = p—(m—m)(l_p—1)m Z p—ZJ 1 i (N5 (fo)s+N;j(go)+vy)

(kl,...,kt)EAI
keWr
X Z p- 23:1 kj(N;(fo)s+N;(g0)+v;5)

(k1,...,kt) € R NNY

since Dy = Ry,. Because
keW;r

R, NNt = { Z aje;: aj € Ny for alleMk},
JEMy,

by making a change of variable as in the previous section and using the defi-
nitions (3.1) of Ay and By, for k =1,...,q, we get

(m-—11) i Bl
_ —(m—
=Y p (1- 11 W
keWr JEM
This completes the proof of the lemma. O

Recall that even if the dimension of the simplicial piece has gone down
(i.e. mg < |I| ), we will still get a (1 —p~!) for each variable. For example, the
integral fzg lz|*|y|* over v(z) = v(y) is (1 —p~1)%(1 — p~2(+D)~1. The second
point to note is that ¢, ; = 0 for any I C T' for which card I > m, where m is
the number of variables in the original integral.

We conclude this section by showing that even for primes of bad reduction,
the rational expression for these local factors is not too far from the explicit
expressions established here for good primes. In particular we can establish
that the candidate local poles for the bad primes are a subset of the candidate
poles {—B;/A; : j = 1,...,q} for the expressions for the good primes. We
follow Igusa’s original proof of the rationality of the local zeta functions (see
[25] or the more recent volume [26]). The essential observation is that the
resolution of singularities over Q is still a resolution of singularities for all
Qy regardless of whether the prime has good or bad reduction. We can then
establish the following:

PROPOSITION 3.3.  For each prime p, there exists a finite set B, such that
for each b € B, there is an associated subset I, C T' and integer e, such that

mel) (1 — ety p_ et
32 Zosp =S| S p II 1 e |

beBy \keWp, JEM,
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Proof. Since (Y, h) is a resolution of singularities over Q, for the poly-
nomial F, H = {z € Y(Qp) : h(b) € Z;'} can be written as a finite dis-
joint union of open subsets U(b), b € By, such that U(b) has a surjective
chart ¢y @ U(b) — p®Zy' for some e, € N. Associated to each chart
there is a subset I, = {i1,...,4,} C T such that for every y € U(b) with

(bU(b)(y) = (y17 v 7ym)

- Niy (fi Ni,. (fi
fiohOQﬁU%b) (ylv--wym)‘ = % 1) ‘yr () )

_ Ni, (g9: N;,. (9i
gmhoqﬁU%b) (yly--wym)’ = Y 160 ‘yr (1) .

We can use these charts as before to express our cone integral for p as
ZD(Svp) = Z Jb(Svp)
beB,

where

Jy(s,p) = /V, |y1|Ni1(f0)s+Ni1 (go)+vi; =1 |yT|Nir(f0)3+Nir(go)+Vir_1 \dy1]| - - - |dym|
P

and V) is the set of all (y1,...,ym) € p®Zy" satisfying, for i = 1,...,1,

> Ny (fi)ord(y;) < D Nij(gi)ord(y))-

j=1 Jj=1
Our analysis of these integrals, as before, implies the statement of the
theorem. 0

COROLLARY 3.4.  For all primes p, the abscissa of convergence of Zp(s,p)
is one of the rational number —Bj/A; where j =1,...,q and Aj # 0.

4. Zeta functions defined as Euler products of cone integrals

We now turn to analysing the global behaviour of a product of these cone
integrals over all primes p.

We make some normalisation of the cone integrals so that the constant
coefficient of the local factors is 1.

Definition 4.1. Let Zp(s,p) be a cone integral defined over Q. Then
denote by a, o the constant coefficient of the power series in p~° representing
the rational function Zp(s,p).

Definition 4.2.  We say that a function Z(s) is an Euler product of cone
integrals over Q with cone integral data D if

26)=2p(s)= I (apb-Zo(s.p).

p prime, a, 070
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Remark 1. In our analysis we shall want to exclude the trivial case where
Zp(s,p) = app for all p. A constant function converges everywhere so that its
analysis is not of interest. To check whether a cone integral is constant we
need to check whether

{x € Zy," : fo(x) = 0 mod p and 9(x) is valid}
is empty for all p.

THEOREM 4.3. A nonconstant function Z(s) defined as an Euler product
of cone integrals over Q has a rational abscissa of convergence o € Q.

Proof. Let QQ = Q1 U Q3 denote the finite set of primes where the Q) are
those primes p with bad reduction for which a, o # 0 and the @2 are those p
for which ap, o = 0. Let W} denote the set of those k for which >jem, A # 0.
Put W’ = U;cr W}. Then:

(4.1)

p k _m ‘I | AJS+BJ)
Zo(s)=P(s)- [T [1+ > & kH—As—i—B)
peQ kew 40 jeM,,
where P(s) = [,eq, Zp(s,p) = [leq, Pp(p~°) and P,(X) is a rational func-
tion in Q(X). Note that the abscissa of convergence of P,(p~™°) is a rational
number since by the formula for bad primes (3.2) the denominator is a product
of terms of the form (1 — p~(4is+B5)) where j € {1,...,q}. It will suffice to
prove that

A;js+B
11 (1 n Z Gk =m () 1)l I1 p(”—AsﬁB))
peQ kew' @ JjEM,
has a rational abscissa of convergence.

We explain now a few facts about counting points on the reduction of
varieties mod p.

The Lang-Weil estimate [29] will be a crucial tool:

PROPOSITION 4.4.  There is a constant C = C(f, k) such that every
absolutely irreducible quasiprojective variety E C P* defined over F,, of degree
f and of dimension d satisfies

’card E(F,) — pd’ < Cp?=1/2,

We shall be interested in counting points on X, the reduction mod p of a
variety X defined over Q which is irreducible over Q. Let d be the dimension
of X. The reduction X need not be irreducible as a variety over F,,.

Let @ be the algebraic closure of Q and G its Galois group. Consider the
decomposition

X=XjU---uUX,
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of X into irreducible components over @ The Galois group G acts transitively
on the set of components {X7,..., X, } because X is defined over Q. Since the
action is transitive all the X; also have dimension d. Let U < G be the kernel
of this action and put L = @U. Then L is a finite Galois extension of QQ with
Galois group G = G/U and every X; (i = 1,...,n) is defined over L.

For every prime number p we choose a prime ideal p in L which divides p.
We write Iy < Dp < G for the corresponding inertia, respectively decomposi-
tion group. If p is unramified in L, that is, Iy = {1}, we denote by Frob, the
conjugacy class in G consisting of the Frobenius elements.

We choose a finite set of primes S such that for every p ¢ S the following
are satisfied:

(1) the reduction X mod p of X is smooth; and
(2) p is unramified in L.

We define a function associated to the variety X which will be an essential
tool in analysing our zeta functions.

Definition 4.5. Let X be a smooth quasiprojective variety defined over
Q which is irreducible over Q. Define [,,(X) to be the number of irreducible
components (defined over F,) of X, the reduction mod p of X, which are
absolutely irreducible. Define

Vx(s) =1 1= 5,(X)p™).

p

We prove the following important properties of this function Vx(s):

LEMMA 4.6. (1) The abscissa of convergence of Vx(s) is 1.

(2) There is a 0 > 0 such that Vx(s) has a meromorphic continuation to
the half-plane R(s) > 1 — 4.

Proof. We apply the set-up introduced above. The finite group G acts
on {X1,...,X,} and we write M for the corresponding (complex) permuta-
tion module. We obtain a complex finite-dimensional representation p : G —
GL(M). Denote by Tr(p(Frob,)) the trace of a representation of the conjugacy
class Frob, where p ¢ S. We claim that

(4.2) Tr(p(Frob,)) = 1 (X)

for all p ¢ S. To prove this we let X7,..., X, be the reductions of X71,..., X,
mod p. These are absolutely irreducible, smooth quasiprojective varieties de-
fined over the residue field Fp corresponding to the prime ideal p. Let Gy
be the Galois group of Fp over F,. Then Gp acts on the set of components
X1,...,X, and the reduction mod p is an equivariant map from {X,..., X,,}
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to {Yl, . ,X_n} with respect to the natural isomorphism from Dy to Gp. Hence
the number of fixed points of G on {X3,..., X} is also equal to [,(X) and
formula (4.2) follows.

We are now ready to prove statement (1) of Lemma 4.6. Clearly [,(X)
is bounded by the number n of absolutely irreducible components of X. This
implies that the abscissa of convergence of Vx(s) is less than or equal to 1.
On the other hand the set of primes p ¢ S such that Frob, = {1} has nonzero
arithmetic density by Cebotarov’s theorem (see [32]). This establishes (1).

Finally to prove (2), we define

Lx(s) = [] det (1 — p(Frob,) - p~)

p¢S
This Euler product is up to finitely many Euler factors equal to the Artin
L-function of p. It is well known that Lx(s) has abscissa of convergence 1 and
also has a meromorphic continuation to all of C (see [32]). From formula (4.2)

-1

we infer that
det (1 — p(Frob,) -p™®) =1 —1,(X) -p° + i app
k=2
with suitable ay. It follows that
(1= 1,(X) - p~*) (det (1 = p(Froby) - p~*) ) =1+ i bip™**
k=2

with b € C. Since the eigenvalues of p(Frob,) are roots of unity, the b;, can be
bounded independently of p ¢ S. This proves (2). O

LEMMA 4.7. Let X be a smooth quasiprojective variety defined over Q
which is irreducible over Q. Let d be the dimension of X. There exists 6 € R
such that for almost all primes p

|card(Y(Fp)) - lp(X)pd| < 5pd_1/2
and 1,(X) > 0 for a dense set of primes.

Proof. LetY be a smooth quasiprojective irreducible variety over IF,, which
is not absolutely irreducible. Then Y (IF,) is empty. To prove this let ¥ =
Y1 U---UY, be the decomposition into irreducible components over E. The
Galois group of I/F; over I, acts transitively on the set of components Yi,...,Y.
So an Fj-point of Y would be contained in every component. If there is more
than one component then it is a singular point of Y. But Y was assumed to be
a smooth variety. Hence no such F,-point can exist.

Let Y be now a smooth quasiprojective, not necessarily irreducible variety
over IF,, and let Y = Y7 U- - -UY,. be the decomposition into the disjoint union of
the irreducible components over ). Let them be ordered such that Y7,...,Y]
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are absolutely irreducible and Yj41,...,Y, are not. Then the above argument
shows that

card(Y (Fp)) = card(Y1(Fp)) + - - - + card(Y;(Fp)).

The statement of the lemma follows for all primes p such that reduction
mod p of X is smooth by the Lang-Weil estimate (see Proposition 4.4). Note
the irreducible components of X all have dimension d, the dimension of X, be-
cause the irreducible components over I/F;, can be obtained from the irreducible
components of X over Q by reduction mod p as explained above.

The fact that [,,(X) > 0 for a dense set of primes follows from the proof
of the previous lemma. O

We can use Lemma 4.7 to estimate the size of ¢, ;. Recall that this is the
number of points mod p on E; \ Ujery; Ej where By = (N;¢p E;.

Let Fr, k € C}, be the irreducible components over Q of E; with maximal
dimension d; say. We show later (see Proposition 4.13) that df = m — |I].

LEMMA 4.8.  The dimension of every irreducible component of Fj N
Ujer\s Ej is strictly smaller than dy. (If Fj has dimension zero then this means

that FyNUjep\; Ej is the empty set, which by convention has dimension —oc.)
Proof. This follows since the E; have normal crossings. O

Since the dimension of E7 N U;ep\; Ej is strictly smaller than dj, this

implies that there exists some &’ > 0 such that for almost all primes p

Cpl — Z card Fy 1 (Fp)| < §ph—t.
keCy

But now this together with the Lang-Weil estimate in Lemma 4.7 implies:

PROPOSITION 4.9. There exists § € R such that for almost all primes p

lepr — > Lp(Frp)p™| < oph=1/2
keCy

and l,(Fr ) > 0 for a dense set of primes p.

We make the following definitions for kK € W’ and p ¢ Q:

—(Aj8+Bj)
Cpk —m I | p
Znpls) = L=pm(p— 1)l —— B
P ap.0 j€1:\[4k 1— p_(AJS+B])
d, = dryandI,=1if ke Wj.

If di, > 0 then put
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@ max{1+dk_m+|lk|_zj€MkBj —B;
k= s
Yjem, Aj Aj

If d, = —o0, i.e. ¢y = 0 for almost all p, then put aj = —oo.

foerMkandAj;éO}.

To analyse the convergence of our Euler product we use the following basic
facts:

(A) An infinite product [],c;(1 + ay) converges absolutely if and only if the
corresponding sum Y, 7 |a,| converges.

B) >, prime |[p~*| converges if and only if R(s) > 1. In fact if P is a dense set
of primes we also have that > .p [p~*| converges if and only if R(s) > 1.

(C) The Lang-Weil estimate in Proposition 4.9 means that a sum of the form
Z Cp,ITp
2
converges absolutely if and only

>y
p

converges absolutely. Note that we are using here the fact that [,(F )
is nonzero with positive density.

The following lemma collects some relevant information about the con-
stant ap o with which we are normalising our integrals:

LEMMA 4.10. (1) apo = lims_.00 Zp(s, ).

(2)

o xX)| |dx|.
p,0 /{xezg;w(x) is valid and fo(x)ez;} |90(x)] |dz|

(3) For each I C T, W} denotes the set of those k for which 3= ;¢ Aj # 0.
Then for almost all primes p

_ p- I
ap,0 = Z p e Z (p— 1) H 1_,Bi"
IcT keW\w; JjEM]), p

Let Ty be the subset of T consisting of those i for which N;(fo) = 0. Then
Wi =0 for I CTy.
(4) There is an integer N > 1 and a constant C' > 0 such that for all
primes p
1>apo>1-— Np~!— C’p_3/2.

(5) There exists M € N such that for almost all primes p
1<a,g<1+Mp /2
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Proof. Most of this is obvious. For (4) note that for almost all p, |go(x)]
<1onZy and

Zy' 2 {x € Z,' : ¥(x) holds in Z;, and fo(x) GZZ} .
Hence from the description of a, o in (2), apo < 1.
Let r(x) := go(x) fo(x)f1(x) - fi(x) and
L:={x€Z, :r(x) € pZy}.

Note that ¢(x) and fo(x) € Z,, are valid on the complement of L in Z;* and
also that |go(x)| = 1 on this complement.

The equation r(x) = 0 defines a Q-defined hypersurface in m-dimensional
affine space unless it is the empty set in which case the estimate is trivially
valid. There now is an integer N > 1 so that the number of irreducible
components of the reduction of this hypersurface modulo p which are absolutely
irreducible is < N. From the Lang-Weil theorem we know that the complement
of L in Z;' contains > p" — Np™—t — Cp™=3/2 cosets modulo pZy. Since each
coset has volume p~" and since |go(x)| = 1 on this complement the estimate
follows from the formula for a,o in (2). (Of course there is a difficulty in
defining the reduction modulo p if the denominators of the f; and g; are not
prime to p. We have to exclude finitely many primes p, but the N and C' can
be chosen to ensure that the estimate holds for all p.)

Finally for (5), the estimate in (4) implies that there is a constant 7" such
that apo > 1— Tp~! for all but finitely many primes p. Hence for almost all p:

1 Tp~1/2
-1 _ —1/2 4P
< — " =1 S
WOST Tt TP T
Since % goes to 0 as p goes to infinity the estimate follows. O

LEMMA 4.11. For k € W', oy, is the abscissa of convergence of

H (1 + Zk,p(s)) .

PEQ

—(Ajs+Bj)
Proof. First note that each term % converges absolutely if and

; —5;
only if R(s) > y
Suppose that for some [ € M, for which A4; # 0,
-B 1+ dg —m+ [Ii| = X jem, Bj
AT 2jem, Aj
To prove that «ay is the abscissa of convergence it will suffice in this case to
show that

(A +B))

(4.3) S (p— 1) 2Epmm T (=

a
P¢Q P 0 JEMy,
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-1
converges absolutely for R(s) > aj. Since (1 - p_(AJ’S+BJ’)) is a positive

decreasing sequence as p increases for R(s) > _A—fj it A; # 0, it suffices to show
that

(4.4) Z (p— 1)\1k|cp_’kp—mp_ (ZjeMk Aj5+Bj)
p2Q Ap,0
converges absolutely.

From Lemma 4.10 (5), a;(l) < 1+Mp~1/2. Hence (4.4) converges absolutely
provided

ST tp— )l p (EJEM A )
PEQ

converges. This sum converges absolutely (by the Lang-Weil argument (C)) if
Ltdy —m+ || =3 em, B

R(s) >
ZjGMk A
.. . Lt+dip—m+|I;|—
This is the case since R(s) > ay > ZJGM’“ L
Z]E]Wk
1+d—m+|Ii |~ ' ey ]
Suppose now that ap = 2, e AB_’ for all j € M.
delvfk

Now there exist € > 0, d1,62 > 0 such that «
and for R(s) > ay — ¢ and all primes p:

—1
1< H (1 —p_(Ak,I,jS'f‘Bk,I,j)) <1+ 51]9_62.
jEM;

Hence, when we combine this with Lemma 4.10 (5) and our Lang-Weil argu-
ment (C), for R(s) > ax — ¢ the sum (4.3) converges absolutely if and only if
the sum

> (p— D) Flptpmyp ~(Sie, r5:)

p¢Q
converges absolutely, i.e., if and only if R(s) > «a. This completes the proof
that y is the abscissa of convergence of [[,¢q (1 + Zk p(s))- O

COROLLARY 4.12.  The abscissa of convergence of Zp(s), ap, is equal to

max {{ay: ke W}U{B,:peQ1}}

where B, € Q is the abscissa of convergence of the exceptional local factor
P,(p~*) where Q1 is the set of bad primes. In particular, ap is a rational
number.

We shall improve this description of ap in Lemma 4.15.
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The next task is to show that we can meromorphically continue Zp(s) a
little beyond R(s) > ap to allow an application of the Tauberian theorem.
The first step is to show that the maximal value of oy as k varies over the
set W' C W (where recall W indexes the open simplicial pieces Ry of D ) is
realised only by the one-dimensional simplicial edges, i.e. k € {1,...,q}.

The essential fact that we shall use here is the following:

PROPOSITION 4.13.  For k€ W, d, = m — |I].

Proof. Each E; is of dimension m — 1. Since the E; intersect with normal
crossings, the irreducible components of (;¢;, E; have dimension d = m— [Ty |.
For further details see the proof of Theorem 2.4 of [5] or 17.F of [33]. O

This already gives a much simpler description of «y, :

COROLLARY 4.14. (1) For ke W',

1 =2 jem, Bi —B;j .
Qf = max , forj e My and A; A0, .
{ Yjem, Aj A !

(2) If ke W' Nn{1,...,q} then

1— B
Ay,

A —

LEMMA 4.15.
ap =max{ag: k€ W'} =max{ax: ke W N{l,....q}}
and ap, < ap if k > q.

Proof. The first fact to point out is that since the abscissa of convergence
of the local factors (3, for the bad primes p is one of —By /A for k € W' N

{1,...,q},
ap = max{{ag: ke W }U{B,:p€Q1}}
= max{ak 1k € W/}

by (2) of the previous corollary. The rest follows once we can show that for
k>qand ke W’

(4.5) ———=="k < max LijeMynW ;.
e, Aj Aj

Recall the definition of W' from Lemma 4.10 that k € W"if 37, Aj; # 0.
We note that if 7 € M}, then 5 € W’ since
1—=>em, Bi < 1= iemnw Bj
ZjeMk Aj N ZjeMka’ Aj
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We may suppose without loss of generality that |My| = 2, Af <

that A; and As > 0. Then
1—(Bl—|-B2) < 1—-B;
A+ A Aq

if and only if
Ay —A1B] — A1By < Ay + Ay — A1By — Ay B;.
But our assumptions that % < 11_4—’191 and Ao > 0 imply this second

inequality. This confirms statement (4.5) and hence the lemma. O

THEOREM 4.16.  J],¢0 (1 + 3071 Zj,p(s)) has a meromorphic continua-
tion to R(s) > ap — 0 for some § > 0.

Proof. Define

1-B;
R = {k‘EW'ﬂ{l,...,q}: ]:ap},
Aj
kER

For convenience, define Z;,(s) = 0 for the finite number of primes p € Q.

Hence [[,¢q (1 + 3071 Zj,p(s)) =11, (1 + 307 Zm(s)) .

We introduce the following notation which will be convenient during the
course of the proof. Write [], F},(s) = [[, Gp(s) if there exists § > 0 such that
> p(Fp(s) — Gp(s)) converges for R(s) > ap — d. To prove the lemma it will
suffice to prove the following:

(1) TI, Vu(s) is a meromorphic function on R(s) > ap — ¢ for some ¢ > 0.

(2) I, (1 + 307 Zm(s)) Vp(s) = 1; ie., the Euler product converges on
R(s) > ap — J for some § > 0.

We prove (2). It will be convenient to note the following fact: suppose that
for s > ap — 0, the function X,(s) as p — oo is a positive decreasing sequence.
If [T, Fp(s) = 11, Gp(s) then [], F,(s)Xy(s) = 1, Gp(s) Xp(s)-

By Lemma 4.15, ][, (1 + 3051 Zjvp(s)) =1, (1 + > ker Zip(s)) - Recall
the definition of Zj ,(s) for k € {1,...,q} and p ¢ Q:
—(Ags+DBg)

= Sk —m, kP
Zkvp(s) - ap,()p (p ]‘) F 1 _p—(Aks+Bk) :
_m+|1 ‘ —2(Ags+By)
Note that >, ¢, kp K —aRsTEy) COnVerges on R(s) > ap — § for some
-1

6 > 0. This follows because (1 — p_(Ak5+Bk)) is a positive decreasing se-

quence and (153?) < 11_413 k. Putting this together with our analysis on the
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estimate for a,o we see that [, (14 > 4cr Zk(s)) = I, (1 + > ker Zk(s))
where, for all p now,

Zk,p(S) _ cp’kp—m+|lk|p_(Ak3+Bk).

Hence we have

(4.6) 11 (1 + zw: Zj,p(s)) =11 (1 +> Zk,p(s)) .

p j=1 kER
Now

(4.7)

va(s) = H 1 Z Cp7kp—m+\lk|p—(Aks+Bk) = H 1— Z Zk,p(s)

p p kER p keR
since (lgfk}i__+j4fkl) < lzf’“ for i > 1 and k;,k € R. Now from (4.6) and (4.7)

1 7

we obtain

IT{ 1+ Zin(s) | Vols) = TT{1+2_Zin(s) | (1= D2 Zip(s)

P j=1 p j=1 keR

= H (1 + Z Zk,p(s)) (1 — Z Zk,p(s)) .
D keER kER

Here we use the fact that 324, Z;,(s) and Y jcp cppp” ™Ik p=(ArstB) are

(1_Bk1 _Bkz)

both decreasing positive sequences as p — oco. Finally the fact that A AL
1 °2

1-By, . ..
< Tik’ implies that

H(Hzm) (1—2%) =1.

p kER kER

Hence we have proved (2).
For the proof of (1) note that by Proposition 4.9

H (1 _ cp7kp_m+|1k|p_(Ak3+Bk))
p prime

= H (1 _ Z lp(FIk’j)pdkp_m‘i'Ikp_(Ak5+Bk))

p prime J€CT

=TT I1 (-t eer).

J€Cr p prime

Hence the fact that [], Vj,(s) is meromorphic on %(s) > ap — 4 for some ¢ > 0
follows from Lemma 4.6. This completes the proof of Theorem 4.16. O
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To prove our main theorem about the growth of the coeflicients in a Dirich-
let series defined as the Euler product of cone integrals over (, we can now
apply the Tauberian theorems. First of all, an easy consequence of the Hardy-
Littlewood-Karamata Tauberian theorem as formulated in [38, §7.3, Th. 5] is
the following:

THEOREM 4.17.  Let F(s) = Y72 ap,n™*° be a Dirichlet series convergent
for s € C with R(s) > a > 0. Suppose that a, € R and a, > 0 for alln € N.
Suppose further that

F(o)=(c+0(1))(c—a)™™

foro eR, 0 >« and 0 — «. Then,

for N — oc.
This theorem implies:

COROLLARY 4.18.  Let Z(s) = Y72 apn™* be defined as an Euler product
of cone integrals over Q. Suppose Z(s) is not the constant function.

(1) The abscissa of convergence « of Z(s) is a rational number and Z(s)
has a meromorphic continuation to R(s) > a —§ for some § > 0.
(2) Let the pole at s = o have order w. Then,

N

a c
—Z ~————(log N)"
nz::l n I'w+1)
for N — oo and some real number c € R.

Another Tauberian theorem that we can apply is Ikehara’s theorem as
formulated on page 62 of [2]:

THEOREM 4.19.  Suppose F(s) = L [°e*'dA(t) for R(s) > a > 0,

s

A(t) > 0. Suppose further that in a neighbourhood of s = a
F(s) = g(s)(s —a)™" + h(s)

where g and h are holomorphic and g(a) # 0. Assume also that F(s) can be
holomorphically continued to the line R(s) = a except for the pole at s = a.
Then

A(t) ~ lgEZ;)) A

In our case, A(t) = >Jjgpct@n and f(s) = 3302 apn™® = sF(s); then
substituting ¢t = log x we get:
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THEOREM 4.20.  Let the Dirichlet series f(s) = >0 i apn™*® with non-
negative coefficients be convergent for R(s) > a > 0. Assume in a neighbour-
hood of a, f(s) = g(s)(s —a)™™ + h(s), holds where g(s), h(s) are holomorphic
functions, g(a) # 0 and w > 0. Assume also that f(s) can be holomorphically
continued to the line R(s) = a except for the pole at s = a. Then for x tending
to infinity, we have

Z Ay, ~ (a“%(((;)))) - x%(log x)V L,

n<x

To apply this Tauberian theorem we shall need the following facts about
the Artin L-function:

PROPOSITION 4.21. Let G be the absolute Galois group of Q and p : G
— GL(V) be a continuous finite-dimensional complex representation of G. Let
1
L(p,s) :=
(p:5) 1;[ dety z, (1 — p(Froby,) - p=#)

be the corresponding Artin L-function defined as an FEuler product over all
primes p (see [32]). Then the following hold:

(1) The poles of the Euler factors of L(p,s) are on the line R(s) = 0.

(2) The Dirichlet series L(p, s) converges for R(s) > 1 and has meromorphic
continuation to all of C.

(3) The extension of L(p,s) has no pole or zero on the line R(s) =1 except
possibly in s = 1.

Proof. Properties (1) and (2) are well known; see [32]. To prove (3) note
that by the Brauer induction theorem (see [32]) and by class field theory, there
are Hecke characters xi,...,xx and @1,...,¢; of appropriate number fields

such that
L(x1,8) -+ L(xx, 8)
L(y1,8) -+ L(t,8)

The Hecke L-functions appearing in this formula have the desired property
(3) (see [28, Ch. 15, §4] and [3, Ch. 13] for the case of trivial characters). O

L(p,s) =

We deduce from this proposition something about our Euler products.

COROLLARY 4.22.  Let Zp(s) = > o>y apn™* be defined as an Euler prod-
uct

Zos)= I (a8 Zo(s.0))

p Prime, a, 070

of cone integrals over Q. Suppose Zp(s) is not the constant function.
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(1) The abscissa of convergence o = ap of Zp(s) is a rational number
and Zp(s) can be holomorphically continued to the line R(s) = « except for
the pole at s = .

(2) Let the pole at s = « have order w. Then there exists some real number
c € R such that

(4.8) a1 +as+---+ay ~c-N*(logN)“™*
as N — oo.

Proof. The proof of Theorem 4.16 established that Zp(s) is the product
of Artin L-functions and a Dirichlet series convergent for R(s) > ap — ¢ for
some ¢ > 0. Note that for those primes p € @)1 with bad reduction, our explicit
expression (3.2) implies that 5, < ap where (3, was the abscissa of convergence
of Zp(s,p). O

It was important to establish that the abscissa of convergence of the local
factors is strictly to the left of ap. For example the coefficients of ¢(s)-(1—p*~1)
do not satisfy an asymptotic formula of the form (4.8). This was pointed out
to us by Benjamin Klopsch and Dan Segal.

Note that we do not know anything about the possibility of other poles in
the region o = R(s) > a — ¢ other than the one at s = . This is because we
have used Artin L-functions to do our meromorphic continuation. However it
is conjectured that these Artin L-functions actually have this one pole and no
others (see [32]).

5. Nilpotent groups

In this section we show that the zeta functions of finitely generated nilpo-
tent groups are essentially Euler products of cone integrals over Q.

To simplify our analysis of subgroups and normal subgroups we use the
following notation: Cé(s) = (a(9).

The following extends a result in [24]. It will allow us to concentrate on
counting in rings rather than in groups:

THEOREM 5.1.  Let G be a finitely generated nilpotent group. Then there
is a subgroup of finite index Gy and a Lie algebra L(Gq) over Z constructed as
the image under log of Go such that:

(1) For x € {<,<} and almost all primes p

CGp(8) = o p(8) = CrGo) p(8)-

(2) If aj(G), a(Go) and oy (L(Go)) denote the abscissas of convergence
of the local factors Cf ,(s),(G, () and Cz(Go)p(s) respectively, then for all
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primes p

o3 (@) = a(Go) = ap(L(Go)).

Proof. Part (1) follows from Section 4 of [24]. The same paper contains a
proof (of Proposition 1.8) that the abscissa of convergence is a commensura-
bility invariant which implies that a7 (G) = a;(Go). (Note that the statement
of Proposition 1.8 is slightly weaker applying to torsion-free nilpotent groups,
but the proof suffices to establish that ay(G) = a;(Go).) A similar (slightly
simpler) argument shows that if Ly is a Lie subring of finite index in L then
OZ;(L) = a;(Lo)

We shall deduce the remaining equality (o (Go) = o (L(Go))) from Propo-
sition 5.2 below. We shall explain this argument together with the construction
of Gg from G. We consider the prime p to be fixed and write ép for the pro-p

-~

completion of G. We have a;(G) = aj(G)p) and o (L) = ay(L ® Zy) (L a

Lie algebra). The abscissas of convergence a;(ép), oy (L ® Zy) are those of
the power series (in p~*) counting open subgroups, open subalgebras of finite
index respectively or open normal subgroups and open ideals of finite index.
We may now replace G by Gy chosen so that é\op is a uniform pro-p group (see
[7]). The result now follows by a straightforward application of the proposition

below. 0

The following proposition is due to Dan Segal. We cordially thank him
for the permission to include its proof here. Let G be a pro-p group and L be
a finitely generated Lie algebra over Z,. We write in accordance with previous
notations sy (G), si (L) for the number of open subgroups, open subalgebras of
index at most p™ in G, L respectively, and s;(G), s5(L) for the corresponding
numbers of open normal subgroups of GG, open ideals of L. We shall use without
special mention the results of [7, §9.4], concerning the correspondence between
powerful Lie algebras and uniform pro-p groups. Note in particular that L =
log G is a powerful Z,-Lie algebra for any nilpotent uniform pro-p group G (see
[7, §9.4]).

PROPOSITION 5.2. Let G be a nilpotent uniform pro-p group and define
L = logG to be its Lie algebra. There exist a,b, B,D € N, an open normal
subgroup G1 of G and an open powerful subalgebra Ly of L such that, for all

(5.1) ss(L) < s5ya(G)
(5.2) si(Q) < Bsiy(L)
(5.3) s3L) < si(Gh)

(5.4) s3@) < Dsi(Ly).
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Proof. Say G has nilpotency class ¢ and dim L = r. We put p=p if p is
odd,p=4ifp=2.

(5.1). If A is an open subalgebra of L then pA is powerful so H(A)
:= exp(pA) is a uniform subgroup of G, and

|G:H(A)|=|L:pAl=p"|L:A|.

Since A +— H(A) is one-to-one it follows that s (L) < 3§+a(G) where a = r if

p is odd, a = 2r if p = 2. (This part does not depend on G being nilpotent.)

(5.2). There exists f € N such that for each open subgroup H of G,

the subgroup H?' is uniform ([7, Prop. 3.9 and Thm. 4.5]). Then M (H)
= log(H pf) is a powerful subalgebra of L, and

IL: M(H)| = ]G:pr] <p'|G: H|

where b = fr. The mapping H — M (H) need not be one-to-one; we show
that its fibres have bounded order. The subgroup H is contained in

Hy = (exp(p™/ M(H)),

and H; is generated by elements x such that o’ e pr, which implies that
HY < HY < H where m = c(c + 1)f/2 (|35, Chap. 6, Prop. 3]). The group
Hy/HY" has order at most p”" and rank at most 7, hence contains at most
meQ subgroups. Hence the number of subgroups H corresponding to a given

M(H) is at most p™, and it follows that s5(G) < Bs§+b(L) where B = p™"*.

(5.3). This depends on the ‘commutator Campbell-Hausdorff formula’ (see
[7, §6.3]): for h, x € G with logh = a, logz = u we have

(5.5) log[h, z] = (a,u) + Z ge(a, u)e,

where each (a,u)e is a repeated Lie bracket involving at least one a and one wu,
the ge are rational numbers depending only on e, and the sum is finite since
L is nilpotent. Fix f € N so that p/ge € Z for each e (and assume that f > 2
if p=2). Now put G; = ar'

Let I be an open ideal of L. Then p/I is a powerful Lie subalgebra of L,
so H(I) := exp(p’I) is a uniform subgroup of G, contained in G;. Moreover,
applying (5.5) with h € H(I) and z =y’ € Gy we see that

log[h, x] = (a,u) + Zp"(e)fqe(a,log Y)e € pf I

where n(e) denotes the number of occurrences of u in (a,u)e. It follows that
H(I) is normal in G;. Also

|G : H(I)| = ’logGl :pfl‘ = ’pr:pr

=|L:1|.

As I — H(I) is one-to-one this shows that s5 (L) < s5(G1).
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(5.4). According to [7, Prop. 3.9], G has an open normal subgroup G;
such that whenever T' is an open normal subgroup of G contained in Gy, T is
powerfully embedded in G (i.e. [T, G1] < TP). In particular, T is a uniform
group. By a result of Shalev (see [7, Exercise 2.2(iii)]) we then have

2n

"G < (TGP < TP

for all n € N. This implies that for z € T and y € G we have

(log z,logy) € plogT,

by [7], Lemma 7.12. Tt follows that log 7" is an ideal of L1 = log G;.
Now to each open normal subgroup N of G we associate

I(N) :=log(N NGy).
The preceding paragraph shows that I(NV) is an ideal of L, and we have
|L1: I(N)|=1|G1: NNGy| <|G: NJ.

It remains to bound the fibres of the mapping N +— I(N). Given
N NGy = Np and NG; = Ny, the number of possibilities for IV is at most
|[Hom(No/G1,G1/Ny)|. Say p* is the exponent of G/G1. Since every charac-
teristic subgroup of G1/N; is powerful, Exercise 2.5(d) of [7] shows that the
elements of order dividing p* in G /N form a subgroup Ej(G1/N;) = E, say;
also E is powerful and has rank at most 7, so |E| < p*". Since G/G; also has
rank at most r it follows that

|Hom(Ns /Gy, G1/Ny)| = [Hom(Ny /Gy, E)| < p*"”.

We conclude that the number of normal subgroups N of G giving rise to a given
I(N) is at most D = D1p*™* where D is the number of normal subgroups in
the finite group G/G1, and it follows that s3(G) < Dsy(L1). O

The finitely many exceptional primes in Theorem 5.1 will not worry us
thanks to the following result, proved first for torsion-free nilpotent groups in
[24] and more generally by the first author in [8]:

THEOREM 5.3. Let G be a finitely generated group of finite rank. Then,
for x € {<,<} and for each prime p, (¢, ,(s) is a rational function.

Recall that a group G has finite rank if there is a bound on the number
of generators of finitely generated subgroups; for example this holds if G is a
finitely generated nilpotent group or more generally a polycyclic group.

The proof of the rationality of the local factors depended on expressing
them as “definable” p-adic integrals. We recall the description of these integrals
in the case of a ring L which is additively isomorphic to Z¢. Fix a basis for
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L which identifies it with Z%. The multiplication in L is given by a bilinear
mapping
B8:72%x 7% — 7,
which extends to a bilinear map Zg X Zg — Zg for each prime p, giving the
structure of the Zy-algebra L, = L ® Z,,.
Define

V<:{ (mit) € Trg (Zp) s for 1 <i,j < d, 3}, Ve, }

P such that [(m;, mj) = Zgzl }/zl;:mk
and
V= { (mpyr) € Try (Zy) :for 1 <i,j < d,EIYZ-%,...,Yi? €Z, }
P

such that B(m;,e;) = 24, Yll;mk

where Trg (Z,) denotes the set of upper triangular matrices. Each subset con-
sists of matrices whose rows m; generate a lattice in Zg which is either a
subalgebra or an ideal. The d tuple e; denotes the standard unit vector with 1
in the j* entry and zeros elsewhere and corresponds to the j™ basis element.

PROPOSITION 5.4 ([24, Prop. 3.1]). For x € {<,<} and each prime p

* —1\— — —d
Ciple) = (L=p™)7 | maaf' ™ g o

P

v(m)

where v is the valuation on Z,, |m| = p~ and |dz| is the normalized additive

Haar measure on ZZ(dH)/z =Try (Zp) .

The proof of the rationality of these p-adic integrals relies on observing
that V' are definable subsets in the language of fields. One can then apply
a theorem of Denef’s [4] which establishes the rationality of definable p-adic
integrals. Denef’s proof relies on an application of Macintyre’s quantifier elim-
ination for the theory of Q, which simplifies in a generally mysterious way the
description of definable subsets like V). However in our case it is possible to
do this elimination by hand since it involves solving linear equations. This
removes the necessity for the model theoretic black box in the proof of the
rationality.

THEOREM 5.5. Let L be a ring additively isomorphic to R* where R =7
or Zyp. For x € {<, <} there exist homogeneous polynomials

gik(X) € R[X,s: 1 <7 < s <d]
(1,5, k € {1,...,d}) of degree k for *x =< and k + 1 for x =< such that
Vi = { (i) € Tra (Z) : v(mas -+ )

p
< v(giju(mes)) forijk € {1,...,d} }.
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Proof. We can express the defining conditions for V;J in matrix form which
makes things quite transparent. Let C; denote the matrix whose rows are
c; = f(ei, ;).

M € V! if we can solve for each 1 <i,j < d the equation

159

micjz(Y.l. ...,Y;?)M

with (Y;;, - ,Yi?) € Zg. Let M’ denote the adjoint matrix and

ME— M’diag(mg_zl e m;dl, . ,m;dl, )-

Then since the matrix M is upper triangular, the ik entry of M? is a homo-
geneous polynomial of degree k—1 in the variables m,s with 1 <r < s < k—1.
Then we can rewrite the above equation as:
mZC’]Mh = (mHYi;, RN A T mdin?) .
Let g5 (mys) denote the k™ entry of the d -tuple m;C; M® which is a homoge-
neous polynomial of degree k in m,,. (In fact we can see that it is homogeneous
of degree 1 inm;s (s =1,...,d) and degree k—1in m,s with 1 <r < s < k—1.)
Then V! has the description detailed in the statement of the theorem.
For M € V;,S we are required to solve for each 1 < i,j5 < d the equation

d

1 d

m; E m;Cy Mh:(mHYij,...,mn---mdinj)
1=§

with (K},,Y;?) € Zg. Let g%k(mrs) denote the k™" entry of the d-tuple
m; (Zf:j mlel> M?" which is a homogeneous polynomial of degree k + 1 in
mys. Again with these polynomials, VpS has the description detailed in the
statement of the theorem. O

Now, our theorem has the following corollary stating that the local zeta
functions of the ring L can be represented by cone integrals over Q:

COROLLARY 5.6.  Let ¥* be the cone condition defining V,;. Set fo =

miy - -Mgq and gg = m‘lil_1 <--mg_1,4-1. Let D* be the associated cone integral
data. Then

(ip(s) = (1 —p )" Zp-(s —d,p).

1) since

We know that the constant term of Zp«(s —d, p) must be (1—p
szp(s) has constant term 1. So, by Theorem 5.1 (1) the global zeta function
¢4 (s) is the Euler product of the cone integrals up to multiplication by a finite
number of rational functions in p~®. Note that the abscissas of convergence

of these finite numbers of rational functions are strictly less than the abscissa
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of convergence of this Euler product by Theorem 5.1 (2) and the observation
of the previous section that the abscissa of convergence of each Zp-«(s,p) is
strictly less than the abscissa of convergence ap« of Zp«(s). This is important
in application of the second Tauberian theorem of the previous section since
we must guarantee that there are no poles creeping in from the exceptional
local factors which lie on R(s) = ap-. Hence we get as a corollary of our work
on the zeta functions defined as Euler products of cone integrals the following:

THEOREM 5.7. (1) Let G be a finitely generated nilpotent infinite group.
Then there exist finitely many varieties E;, i € T, defined over Q sitting in
some Q-scheme Y and rational functions Pr(z,y) € Q(z,y) for each I C T
with the property that for almost all primes p
(5.6) Gp(s) =D cpiPr(p,p~°)

ICcT
where
cpr = card{a € Y(F,) : a € E; if and only ifi € I}
and Y means the reduction mod p of the scheme Y.

(2) The abscissa of convergence a*(G) of (5 (s) is a rational number and
C&(s) has a meromorphic continuation to R(s) > a*(G) — 6 for some § > 0
with the property that on the line R(s) = o*(G) the only pole is at s = a*(G).

(3) There exist a nonnegative integer b*(G) € N and some real numbers
¢, € R such that

TG = al(@) +a3@2 D g ay(@N T
~ - (log N)b*(G)-i—l
sv(@) ~ ¢ N (log N)b*(G)
as N — oo.

Recall that in (1) the irreducible varieties arise from the resolution of
singularities of F, the product of all the polynomials defining the cone integral.
Let us identify this F' = F7} explicitly for the cone integrals defining the zeta
function of the Lie algebra L = L(G) of G. The polynomial depends on a choice
of basis for L which identifies it with Z?. Let multiplication in L be given by
the bilinear mapping 3 : Z¢ x Z¢ — 7. Let C; denote the matrix whose rows
are ¢; = [}(e;,€j). Let M = (m;;) be a d x d upper triangular matrix and

M = M'diag(may - - - m;dl, .. ,m;dl, 1) where M’ denotes the adjoint matrix
of M.
Definition 5.8. (1) F;(m;;) is defined to be the product of
d?+1)d d?+1)(d—i+1 d>+1
D B

with all the entries in the d matrices MC']-Mu forj=1,...,d.
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(2) FLS (mij;) is defined to be the product of

(d%2+1)d (d?41)(d—i+1) (d2+1)
myy LT T Mg

with all the entries in the d matrices M (zg:j mjka) Mbfor j=1,....,d.

2 2 . 2
The expression mg . mz(ld =D m&fl ™) arises from the prod-
uct of the two monomials in the integrand fo = mqy1---mgq and gog = mclll_l

---mg_14—1 and the monomials f;;; = m11---myy, for i,j,k € {1,...,d}.

Definition 5.9. For a finitely generated nilpotent group GG we define the
polynomials F¢; = Fj g for x € {<,<}, where L(G) is the associated Lie
algebra of G.

Again there is some choice involved in the definition of the Lie algebra
L(G) as it is the image under log of some subgroup of finite index in G. However
up to finitely many primes, the explicit formulas associated to the cone integrals
will be the same for polynomials Ff = F E(G) arising from different choices of

Lie algebra and basis for the Lie algebra. We refer the reader to the paper [21]
of the first author and Loeser where the concept of motivic cone integrals is
considered. This establishes that despite the many choices made on our way
to the explicit expression (5.6), the expression is canonical. This is used in [12]
to canonically associate to each nilpotent group a subring of the Grothendieck
ring generated by the system of varieties E; (i € T).

Although we know that the constant term of the cone integrals is (1—p
it is instructive to see what the analysis of the resolution corresponding to

—l)d

Fj(mj) tells us. The constant term corresponds to when the integrand is
constant which occurs when fg = mq1---mgq is a unit, i.e. for those bases for
the whole group G. Let Ty C T (where T is the set indexing the irreducible
components F;) be defined as follows: if i € Ty then N;(fp) # 0. Note that if
N;(fo) = 0 then N;(go) # 0 since fy = mq1---mgq and go = m‘lil_1 M 1d—1-
So those I C T with INTy nonempty are precisely those that do not contribute
to the constant term. So the constant term comes from those I C T\Ty. We
analyse now the data in our formula associated to such I. If I C T\Tj then
for i € I, Ni(fo) = 0 and since fij = mq1---myy this also implies that
N;i(fijr) = 0. Hence there are no conditions on our subset since the conditions
are

ZT: Ni,(fiji)ord(y) < ZT: Ny (gijr)ord(yr)-

=1 =1

This implies then that w; = 1, m; = m and Ay ;1 = 0 and By = 1 for
k=1,...,m. This is the same as the case that I = () which we considered at
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the end of Section 2. Hence the constant term is

p—m Z Cp,I-

ICT\Ty

We know of course what the constant term should be for this integral, namely
(1 —p~1)4. Hence we get that

Z Cp,I = pm_d(p - 1)d-
ICT\Ty

This is the same size as the number of points over I, in affine space of dimension
m minus the hyperplanes defined by m;; = 0. This means that the number of
points has not changed outside of the union of hyperplanes m;; = 0 after
we have done the resolution. Does this mean that our variety is nonsingular
outside this union of hyperplanes?

We collect together here the present knowledge we have about the possible
values for a*(G). Let G be a torsion-free, finitely generated nilpotent group.
Let h denote the Hirsch length of the nilpotent group G and h,;, denote the
Hirsch length of the abelianisation, h(G/G") .

(1) hap < a¥(G) < h.

(2) (3 —2v2)h — % < aS(G) < h. The lower bound, which for large h
(h > 17) exceeds h/6, is due to Segal. The proof was extended by Klopsch to
soluble groups of finite rank.

(3) If G has class 2 put m = h(Z(G)) and r = h(G/Z(G)) where Z(G) is
the centre of G. Then it is proved in [24] that

1/2(m 4 r~1) < a¥(G) < max{hap, h(1 — 771}

(4) If H has finite index in G then o*(G) = o*(H) (Proposition 1.8 of
[24]).

The paper [24] contains a number of examples of zeta functions of class
two groups calculated by Geoff Smith. There are some other examples cal-
culated by Dermott Grenham which are recorded in [13]. In all these ex-
amples a=(G) = a¥(G) = hy,. However this reflects the paucity and small
nature of the nilpotent groups so far considered rather than a general feature.
The estimates in (3) show that for example if G = FJ then h,, = 5 whilst

MZ(G)) = (5). Hence
QY(FP) > 1/2(m +r~1) > 5.

In [19] we shall show that the zeta function counting all subgroups in the
free class two nilpotent group F3 on three generators has abscissa of conver-
gence at a=(F3) = 7/2. In particular this is the first example of a group for
which the abscissa of convergence is not an integer.
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At present we do not know anything about the order of the poles of {z(s).
Our analysis above might help in giving a bound in terms of the Hirsch length
since the pole at the abscissa of convergence has order given by the number of
times we need to multiply by the Artin L-function. This is determined by the
number of irreducible components of E; as I C T. The other interesting issue
is some interpretation of the residue at this pole.

If the nilpotent group G is not torsion-free then Proposition 1.8 of [24]
can be extended to show that a*(G) = o*(G/GY") where G*' is the (finite)
set of all torsion elements of G. However if we just take a finite extension of
a nilpotent group then we do not know very much about the change in the
abscissa of convergence. Extending even the free abelian group by a finite
group can have quite a dramatic effect on the movement of the poles of {z(s).
As an example compare the infinite cyclic group Z where (z(s) = ((s) and
the infinite dihedral group Dy, where (p__(s) = 27°((s) + ((s — 1). Extension
by a finite group (here Cy) therefore has quite a subtle effect on the lattice of
subgroups even to the extent of changing the rate of polynomial growth.

In [22] explicit examples calculated by John McDermott are recorded for
the wallpaper groups which show the effect of extending Z? by a finite group.
It reveals how sensitive the zeta function is as the nature of the poles varies
dramatically.
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