
Functional equations and uniformity for local zeta functions of
nilpotent groups

Du Sautoy, Marcus.
Lubotzky, Alexander, 1956-

American Journal of Mathematics, Volume 118, Number 1, February
1996, pp. 39-90 (Article)

Published by The Johns Hopkins University Press
DOI: 10.1353/ajm.1996.0007

For additional information about this article

                                         Access Provided by Oxford University Library Services at 09/03/12 10:03AM GMT

http://muse.jhu.edu/journals/ajm/summary/v118/118.1du_sautoy.html

http://muse.jhu.edu/journals/ajm/summary/v118/118.1du_sautoy.html


FUNCTIONAL EQUATIONS AND UNIFORMITY
FOR LOCAL ZETA FUNCTIONS OF NILPOTENT GROUPS

By MARCUS P. F. DU SAUTOY and ALEXANDER LUBOTZKY

Abstract. We investigate in this paper the zeta function �^Γ,p(s) associated to a nilpotent group Γ
introduced in [GSS]. This zeta function counts the subgroups H � Γ whose profinite completion Ĥ
is isomorphic to the profinite completion Γ̂. By representing �^Γ,p(s) as an integral with respect to
the Haar measure on the algebraic automorphism group G of the Lie algebra associated to Γ and
by generalizing some recent work of Igusa [I], we give, under some assumptions on Γ, an explicit
finite form for �^Γ,p(s) in terms of the combinatorial data of the root system of G and information
about the weights of various representations of G. As a corollary of this finite form we are able
to prove (1) a certain uniformity in p confirming a question raised in [GSS]; and (2) a functional
equation that the local factors satisfy �^Γ,p(s)jp!p�1 = (� 1)npas+b�^Γ,p(s). This functional equation
is perhaps the most important result of the paper as it is a new feature of the theory of zeta functions
of groups.

0. Introduction. Let Γ be a finitely generated, torsion-free nilpotent group
and define for a family of subgroups X � of Γ the associated Dirichlet series

��Γ(s) =
X

H2X�
jΓ : Hj�s =

1X
n=1

a�n(Γ)n�s

where

a�n(Γ) = cardfH 2 X � j jΓ : Hj = ng.

Such functions were first introduced in the paper [GSS] where the following
classes of subgroups were considered:

X� = fall subgroups of finite index in Γg

X / = fH 2 X� j H normal in Γg

X
�= = fH 2 X�jH �= Γg

X^ = fH 2 X�jĤ �= Γ̂g

where Γ̂ denotes the profinite completion of Γ. In that paper [GSS] it was estab-
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lished that for � 2 f�, /,^g these functions have “Euler products”: if we define
for each prime p the following local zeta function

��Γ,p(s) =
1X
n=0

a�pn(Γ)p�ns

then for � 2 f�, /,^g

��Γ(s) =
Y

p prime

��Γ,p(s).

They also provide an example to show that �
�=
Γ (s) does not necessarily decompose

in such a manner (see Lemma 7.4 [GSS]). The main result of the paper [GSS] is
that the local factors ��Γ,p(s) are rational functions in p�s. This rationality result
is extended in [duS1] and [duS2] to the classes of p-adic analytic groups and
finitely generated groups of finite rank and in [duS3] to a class of S-arithmetic
groups. The proofs all depend in part on expressing ��Γ,p(s) as a p-adic integral
with respect to the additive Haar measure on ZN

p and then using logical techniques
introduced by Denef [D] and later extended by Denef and van den Dries [DvdD]
to prove rationality results for the class of “definable” p-adic integrals.

In [duS4] the logical setting is exploited further to prove a number of uni-
formity results. Although powerful, these techniques give us little control on the
resulting rational functions. In particular they are insufficient to give us an an-
swer to the following question, raised in [GSS], about the uniformity in p of
these rational functions in p�s:

Question 0.1. Let � 2 f�, /,^g and Γ be a finitely generated, torsion-free
nilpotent group. Do there exist finitely many rational functions W�

1 (Y , X), : : : ,
W�

r (Y , X) 2 Q(Y , X) such that for each prime p there exists i such that

��Γ,p(s) = W�
i (p, p�s)?

Definition 0.2. If the answer to Question 1.1 is “yes”, we shall say that ��Γ(s)
is almost universal horizontally or almost universal in p. If r = 1 we drop the
“almost”.

(The qualification “horizontally” in this definition refers to the fact that we
are varying the prime p. In [duS5] the concept of being almost universal “verti-
cally” is introduced in which the prime p is fixed and one considers how ��Γ,p(s)
varies in a tower of unramified extensions of Qp. In the work of Igusa it is
this vertical direction which has received more attention. The two concepts seem
to be intimately related in the sense that once you can prove one direction, the
proof generally yields universality in the other direction. In our context the global
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zeta function and its Euler product make the horizontal direction more natural to
consider.)

The Question 0.1 arose from experimental observation. For example, if #K

denotes the ring of integers of a number field K and Γ = Tr3 (#K) is the group
of upper triangular matrices over #K then the form of ��Γ,p(s) depends exactly on
how the prime p behaves in the extension field K. In [GSS] they go on to answer
this question affirmatively for the class of finitely generated free nilpotent groups
and � = ^ by producing an explicit formula in this setting for �^Γ,p(s).

In this paper we generalize this example to produce an explicit formula for
�^Γ,p(s) for a wide class of finitely generated, torsion-free nilpotent groups. We
get two important corollaries of this explicit result. In this setting

(1) �^Γ (s) is almost universal in p;
(2) the rational functions Wi(Y , X) satisfy a functional equation of the fol-

lowing form

Wi(Y
�1, X�1) = (� 1)niYaiXbiWi(Y , X)

where ni, ai and bi are explicitly computable integers.
It is perhaps this functional equation which is the most important result of

this paper. Although it is only a local functional equation, it is a new feature
in the theory of zeta functions of groups. This surprising symmetry lends more
weight to the claim that these functions are important natural invariants of a
group. In addition all known examples of the other (perhaps more interesting)
zeta functions ��Γ,p(s) � 2 f�, /g that have been calculated also satisfy such a
functional equation. This experimental evidence is documented in [duS5]. Such a
functional equation hints perhaps at an analogue of the methods we shall introduce
here which would yield more precise knowledge about the functions ��Γ,p(s) � 2
f�, /g.

The key to our calculation is to represent our zeta function as an integral with
respect to the Haar measure on an algebraic group G, the automorphism group of
the Lie algebra associated to Γ (see Proposition 1.1). In contrast to the integrals
of [GSS], [duS1] and [duS2], we are able to exploit methods which yield an
explicit formula in terms of combinatorial data associated to the root system of
the algebraic group G and information about the weights of representations of G.

In x1 we explain this integral representation. This integral can in fact be
defined for any algebraic group G over a number field k and a representation �
as follows:

Definition 0.3. Let G be a linear algebraic group defined over a field k and
fix a k-rational representation � : G ! GLn.

(i) If k is a finite extension of Qp we set

ZG(k),�(s) =
Z

G+
j det �(g)js�G(g)
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where G+ = ��1���G(k)
�
\Mn(#k)

�
, #k is the ring of integers of k and �G denotes

the right Haar measure on G(k) normalized such that �G
�
G(#k)

�
= 1.

(ii) If k is a finite extension of Q and p is a prime of k we define

ZG(k),�,p(s) = ZG(kp),�(s).

(When it is clear from the context which field k we are considering, we shall
often drop the reference to k and write ZG,�(s) and ZG,�,p(s).)

We also define a global zeta function associated to G by considering the Euler
product of these local factors

ZG(k),�(s) =
Y
p

ZG(k),�,p(s).

We can represent ZG(k),�(s) as an integral over the adelic points of G.
This zeta function associated to an algebraic group is not a new zeta function,

but has been studied by Hey, Weil, Tamagawa, Satake, Macdonald and more
recently by Igusa for various reductive groups (see [He], [I], [M], [T], [W] and
references therein). Their interest in this function arose from the fact that it
generalizes the Dedekind zeta function of a number field K: let G = Gm, the
multiplicative group and � the natural representation into GL1; then for each
prime p of #K we have ZG,�,p(s) = �K,p(s), the Euler p-factor of the Dedekind
zeta function �K(s). In x1 we provide some of the history of this previous work
which included calculations for GLn (see Example 1.4 (1)) and GSp2n (see Exam-
ple 1.4 (2)).

The subsequent sections (x2-x6) are dedicated to evaluating this integral for
certain algebraic groups and can be viewed as a contribution to the existing work
on this noncommutative generalization of the Dedekind zeta function. Our work
can also be viewed as giving an interpretation to the integral of Definition 0.3 as
a generating function counting substructures of algebras. This puts it in line with
the classical work on zeta functions which counts ideals in rings of algebraic
integers or simple algebras.

In x2 we start with the setting of an algebraic group G defined over a finite
extension of the local field Qp. We catalogue a number of conditions (Assump-
tions 2.1, 2.2, 2.3) under which we can replace the zeta function ZG,�(s) associated
with G by an integral over the connected component of the reductive part of G,
involving representations describing the action of the reductive part of G on
the unipotent radical. We then have to consider the following generalization of
ZG,�(s).

Definition 0.4. Let G be a linear algebraic group over a field k. Let � : G !

GLn be a k-rational representation, � 2 Homk (G, Gm) a k-rational character and
� : G ! R an arbitrary function on G.
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(i) If k is a finite extension of Qp we define

ZG(k),�,�,�(s) =
Z

G+
j�(g)js�(g)�G(g).

(ii) If k is a finite extension of Q and p is a prime of k we define

ZG(k),�,�,�,p(s) = ZG(kp),�,�,�(s).

Unfortunately, the � arising from the reduction of x2 need not in general be a
character of G. We give an example in x3.4 to demonstrate this, namely U0

4(Qp),
the upper triangular matrix algebra. As yet the only cases we can deal with in
x5 are when � is a character. Nonetheless we are able to calculate �^Γ,p(s) in this
particular example with the encouraging corollary that the result still satisfies a
functional equation.

We also use the reduction of x2 to calculate a number of other explicit
examples of �^Γ,p(s) for certain nilpotent groups. In x3.1 we begin with the free
nilpotent group F of class c on d generators. Its automorphism group modulo
the IA-automorphisms is isomorphic to GLd. (The IA-automorphisms are those
automorphisms which act trivially on F=F0 where F0 denotes the derived group.
The group of IA-automorphisms is a unipotent subgroup.) Hence combining x2
with Example 1.8 (1) we can compute �^F,p(s). This example has already been
calculated using a different approach in [GSS]. In x3.2 we generalize the example
of x3.1 to give an expression for �^Γ,p(s) for a nilpotent group free in some variety
(e.g. metabelian). In x3.3 we construct examples of rings whose automorphism
groups are classical groups modulo the IA-automorphisms. In particular we can
use Example 1.8 (2) to evaluate �^L,p(s) explicitly in a number of these cases.
We refer to [duS5] for some further explicit computations of ZG,�(s) for classical
groups.

The explicit examples of x3 are valid for all primes p. We show in x4 that in
general, if we start with an algebraic group defined over a global number field K,
then for almost all primes p we can make the reduction of x2 from ZG,�,p(s) to a
zeta function ZH,�,�,�,p(s) associated to the connected component of the reductive
part of G. This entails showing that G(Kp) satisfies the Assumptions 2.1, 2.2 and
2.3 for almost all primes p.

In x5 we consider the question of evaluating the zeta functions ZH,�,�,�(s)
arising from the reduction of x2. We slightly generalize some recent work of Igusa
[I] to evaluate this zeta function under certain hypotheses on H (Assumptions 5.1–
5.5). To make his calculation Igusa utilizes the p-adic Bruhat decomposition
associated to the reductive group H(Kp). The conclusion is an explicit finite
form for ZH,�,�1,�2 (s) in terms of certain combinatorial data associated to the root
system of H and information about the weights of the irreducible components of
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�. In Igusa’s calculation, the symmetry between positive and negative roots of H
gives rise to a functional equation which this expression satisfies.

In x6 we return to the perspective of x4 of a connected reductive algebraic
group over a global field K. However, unlike in x4, we cannot remove all the
assumptions needed for the computation of x5 by excluding finitely many primes.
Our present work therefore calls for even further generalizations of Igusa’s cal-
culation. The conclusion of this present paper is then an explicit finite form for
ZG,�,p(s) for almost all primes p, whenever G is an algebraic group, over a global
field K, with the following conditions on H, the connected component of the
reductive part of G:

Assumption 1. The function � : H ! R is a character (where � is defined
in x2).

Assumption 2. H has a K-split maximal torus.

Assumption 3. The maximal central torus of H is one-dimensional.

Assumption 4. There exists an irreducible component �1 of � which ‘domi-
nates’ the remaining irreducible components.

(In fact we do slightly better than this, by allowing H to be the restriction of
scalars of a group H over L � K which satisfies Assumptions 1-4. This provides
some non-split algebraic groups for which the present methods work. The be-
haviour of ZG,�,p(s) then depends on how the prime p behaves in L.) Assumption 1
refers to the action of H on the unipotent radical of G. Note that all classical
groups satisfy Assumptions 2 and 3.

We have the following corollaries of this expression. The first Theorem is a
generalization of Igusa’s work to some nonreductive groups over a global field
and some non-irreducible representations.

THEOREM A. Let G be an algebraic group over a field K where K is a finite
extension of Q and let � be a K-rational representation. Suppose G and � satisfy
Assumptions 1-4. Then

(1) ZG,�(s) is almost universal in p.

(2) For almost all primes p of K, ZG,�,p(s) satisfies a functional equation of
the form

ZG,�,p(s)jp!p�1 = (� 1)npas+bZG,�,p(s)

for certain explicitly computable integers n, a and b.

THEOREM B. Let Γ be a finitely generated torsion-free nilpotent group or a
ring additively isomorphic to Zd whose algebraic automorphism group satisfies
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Assumptions 1-4. Then

(1) �^Γ (s) is almost universal in p; and

(2) for almost all primes p, �^Γ,p(s) satisfies a functional equation of the form

�^Γ,p(s)jp!p�1 = (� 1)npas+b�^Γ,p(s),

for certain explicitly computable integers n, a and b.

Of course, the host of conditions we put on the groups in Theorem A and B
limit the examples of nilpotent groups for which these results apply. We give in
x3 some such examples including all finitely generated nilpotent groups free in
some variety (see x3.2) and some class two nilpotent groups whose automorphism
groups involve various classical groups (see x3.2). From these examples we can
build more by taking for instance direct products. The hope is, however, that this
paper will serve as a first step towards a more general result in which we can
remove the conditions in Theorems A and B.

Acknowledgements. The first author would like to thank the Institute for
Advanced Studies and the Institute of Mathematics at the Hebrew Univerisity of
Jerusalem and the Royal Society/Israel Science Foundation for hospitality and
support during the course of this work.

1. From nilpotent groups to algebraic groups. The following two results
already established in [GSS] hold the key to our calculation of �^Γ,p(s).

The first result is an integral representation for the following zeta function
associated with a ring L, additively isomorphic to Zn (or Zn

p): let cm(L) denote
the number of subrings H with H 
 Zp

�= L
 Zp for all primes p of index m in
L, and define

�^L (s) =
1X

m=1

cm(L)m�s.

The function �^L (s) decomposes as an Euler product of the associated local factors
�^L,p(s). Let G be the algebraic group defined over Q (or Qp) such that

G(F) = AutF (L
 F)

for every extension field F of Q (or Qp). The choice of a basis for the lattice L
inside L
Q (or L
Qp) defines a faithful rational representation

� : G ! GLn

with the property that G(Zp) = ��1
�
�
�
G(Qp)

�
\ GLn (Zp)

�
= Aut (L
 Zp).
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PROPOSITION 1.1. For each prime p

�^L,p(s) =
Z

G+
p

j det �(g)jsp�G(g)

where G+
p = ��1���G(Qp)

�
\Mn(Zp)

�
and �G denotes the right Haar measure on

the group G(Qp) normalized such that �G
�
G(Zp)

�
= 1 and j � jp is the p-adic norm

on Qp.

The proof is straightforward and can be found in x3 of [GSS].
There are certain classes of groups for which one can define an associated

Lie algebra L such that for almost all primes p the zeta functions ��Γ,p(s) can be
replaced by the zeta functions ��L,p(s). In x4 of [GSS] this is done for the class
of finitely generated torsion-free nilpotent groups. To each such group Γ there
is associated a Lie algebra LΓ(Q) over Q (the Lie algebra corresponding to the
Malcev completion ΓQ of Γ under the Malcev correspondence). The injective
map log : Γ ! LΓ(Q) has the property that the set log Γ spans LΓ(Q). In general,
log Γ will not be an additive subgroup of LΓ(Q). However in x4 of [GSS] the
following result is established:

PROPOSITION 1.2. Let Γ be a finitely generated torsion-free nilpotent group of
Hirsch length n. Then there exists f 2 N, depending only on n, such that L = log Γf

is a Lie subring of LΓ(Q) and, for � 2 f�, /,^g and all primes p not dividing f ,

��Γ,p(s) = ��L,p(s).

If log Γ is a lattice inside LΓ(Q) then we can do slightly better:

PROPOSITION 1.3. Let Γ be a finitely generated torsion-free nilpotent group.
Suppose that L = log Γ is a lattice inside LΓ(Q). Then for all primes p

�^Γ,p(s) = �^L,p(s).

Proof. We have that �^Γ,p(s) = �
�=
Γ̂p

(s) and �^L,p(s) = �^L
Zp
(s) where Γ̂p is the

pro-p completion of Γ. Let H � Γ̂p with H �= Γ̂p. Then log H is a Lie subring of
L
 Zp and log H �= L
 Zp. Conversely let M � L
 Zp and M �= L
 Zp. Then
M is closed under the Campbell-Hausdorff operation. Hence the image exp M in
Γ̂p defines a subgroup which is isomorphic to Γ̂p since M �= L
Zp. The map log
is index preserving by the proof of Lemma 4.10 [GSS]. Hence the result follows.
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(Note that in [duS4] we considered another class of groups for which �^Γ,p(s) =
�^L(Γ),p(s), namely the class of uniform pro-p groups. This equality depends in part
on [Il]. However in general the automorphism group of L(Γ) will fail to have
good reduction mod p—see Assumption (5.3). So our present methods will not
give any information about �^Γ,p(s).)

By Propositions 1.1, 1.2 and 1.3, the study of �^Γ,p(s) for Γ a finitely-generated,
torsion-free nilpotent group reduces to the problem of evaluating the integral
arising in Proposition 1.1.

As we mentioned in the Introduction, this integral can be defined for any
algebraic group G over a number field K and a rational representation �. Since
it represents a generalization of the Dedekind zeta function of a number field it
has in fact received a certain amount of previous attention. Before we proceed to
our analysis of this integral we review some of this history.

Tamagawa [T] considered the case G = GLn with the natural representation
and proved that the global zeta function (defined as the Euler product of these
local zeta functions) has meromorphic continuation to the whole complex plane
and satisfies a functional equation similar to �K(s). The zeta function attached to
GLn is in fact the zeta function of a simple algebra A over the rational number
field Q defined by Hey (see [De]). Consider the arbitrary maximal order # of A
and define

�A(s) =
X
a

N(a)�s

where the summation is taken over all the left integral ideals a of #. Then �A(s)
is independent of the choice of the maximal order #. If A is the full matrix
algebra of degree n over the field K then �A(s) =

Q
p ZGLn,p(s) where p runs

over the prime ideals of the maximal order #. Zorn [Z] gave a proof using the
zeta function of a simple algebra of the local-global theorem of Hasse-Brauer-
Noether that a simple algebra A is a full matrix ring over K if and only if all
local algebras A 
 Kp are full matrix rings over Kp. In a sense we can view
Proposition 1.1 as a generalization of this interpretation of the zeta function of
an algebraic group as the zeta function of some algebra. In his investigation of
zonal spherical functions, Satake [Sa] began the calculation for G = GSp2n, the
general symplectic group, proving that it was a rational function. Subsequently
Macdonald [M] completed the calculation giving an explicit finite form for the
zeta function. We record here both Tamagawa’s result and the first few cases of
Satake and Macdonald’s calculation.

Examples 1.4. (1) Fix a finite extension K of Q. Let G = GLn and � : G(K) !
GLn (K) the natural representation. Then for each prime p of K

ZG,�,p(s) =
n�1Y
i=0

�K,p(s� i)
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where �K,p(s) denotes the Euler p-factor of the Dedekind zeta function �K(s). Note
that the meromorphic continuation and global functional equation of the Euler
product

Q
p ZG,�,p(s) follows from the corresponding properties of �K(s).

(2) Let G = GSp2n, the group of symplectic similitudes defined as follows:
let i denote the n � n matrices with 1’s along the reverse diagonal and zeros
elsewhere, and let

j =

 
0 i
�i 0

!

then GSp2n (K) = fx 2 GL2n (K)jxj(tx) = �(x)j for some �(x) 2 K�g where (tx)
denotes the transpose of x. Let � : GSp2n (K) ! GL2n (K) be the natural repre-
sentation. Fix a prime p of K and denote by q the residue degree of Kp.

(i) If n = 1 then

ZG,�,p(s) =
1

(1� q�s)(1� q1�s)
.

(Since G(K) �= GL2 (K), this is of course a special case of (1).)

(ii) If n = 2 then

ZG,�,p(s) =
(1 + q1�2s)

(1� q�2s)(1� q2�2s)(1� q3�2s)
.

(iii) If n = 3 then

ZG,�,p(s) =
(1 + q1�3s + q2�3s + q3�3s + q4�3s + q5�6s)

(1� q�3s)(1� q3�3s)(1� q5�3s)(1� q6�3s)
.

The first two examples can be found explicitly in [Sa]. The Euler product of
these functions can be expressed in terms of �K(s) and hence have meromorphic
continuation and satisfy a global functional equation.

Example (iii) is based on our own calculation using Macdonald’s explicit
formula [M]. In [duS5] it is proved that the Euler product in Example (2) (iii) has
a natural boundary at <(s) = 4=3. Thus there is no hope of extending Tamagawa’s
global results to more general algebraic groups.

Note that in example (1) the zeta function associated to GLn and K = Q is
none other than the zeta function �^Zn,p(s) = ��Zn,p(s) counting subgroups in the
free abelian group Zn since GLn (Q) is the automorphism group of the trivial Lie
algebra Qn.

In the next section we begin our analysis of these integrals. Are there any
restrictions on the sort of algebraic groups G that can arise in our setting? By a
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result of Bryant and Groves [BG], any Q-algebraic group with any given repre-
sentation can be realized as the automorphism group of a nilpotent Q-Lie algebra
L modulo the group of its IA-automorphisms. (The IA-automorphisms are those
automorphisms which act trivially on L=L0 where L0 denotes the derived Lie
algebra. The group of IA-automorphisms is a unipotent subgroup.) So for our
applications we need to consider ZG,�,p(s) for any algebraic group G.

2. Reduction to reductive groups. Let G be a linear algebraic group de-
fined over k where k is a finite extension of Qp and let #k be the ring of integers
of k. Let � = G ! GLn be a faithful k-rational representation. Let N(k) be the
unipotent radical of G(k), and let G0 denote the connected component of G. We
can write G0(k) as a semidirect product of N(k) and its reductive part, i.e., there
exists a reductive k-algebraic subgroup H of G0 such that G0(k) = N(k)oH(k). In
this section we will show, under a host of conditions on G and the representation
�, how to replace the integral

ZG,�(s) =
Z

G+
j det �(g)js�G(g)

defined in Definiton 0.3 by an integral over the connected reductive part of the
group. In x4 when we consider an algebraic group over a global number field K
we shall show that for almost all primes p of K these conditions on G(Kp) and
� are true.

We begin by reducing to the connected component of G. We need the fol-
lowing:

Assumption 2.1. G(#k) maps onto G(k)=G0(k).

Under this assumption we prove:

PROPOSITION 2.1. ZG,�(s) = ZG0,�(s).

Proof. Let g1, : : : , gn be representatives from G(#k) for the left cosets of G0(k)
in G(k).

Claim.

(a) G+ =
n[

i=1

giG
+
0; (b) G(#k) =

n[
i=1

giG0(#k).

We prove (a); (b) follows similarly. The inclusion G+ �
Sn

i=1 giG+
0 is clear. If

g 2 G+ then g = gig0 2 giG0(k) for some i. Since gi 2 G(#k), �(g0) = �(g�1
i g) 2

Mn(#k). Hence g 2 giG+
0 and the claim (a) is established.
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The proposition follows immediately from:

ZG,�(s) =
Z
Sn

i=1
giG

+
0

j det �(g)js�G(g)

=
nX

i=1

Z
G+

0

j det �(gig0)jsn�1�G0(g0)

= ZG0,�(s)

since j det �(gi)j = 1 and �G = n�1�G0 by claim (b).

For the rest of this section we shall assume that G is connected. We suppose
further that the representation � : G(k) ! GLn (k) satisfies the following:

Assumption 2.2. There exists a partition n = r1 + � � � + rc such that in the
underlying vector space V = kn, if we set Ui = 0 � � � � � 0 � kri � 0 � � � � 0
then Ui is an H(k)-stable subspace and N(k) acts trivially on Vi=Vi+1 where
Vi = Ui � � � � � Uc, i.e., � decomposes into block form such that �jH(k) is block
diagonal and �jN(k) is unitriangular.

By a change of basis we can always realize Assumption 2.2. However, a
change of basis can also change G+. So it is important at this stage to assume
that we have chosen the representation to satisfy Assumption 2.2. In x4 when we
work over a global field K, we shall use the fact that a change of basis does not
change G+ for almost all primes p and hence we can drop this assumption in that
setting.

Denote by �i the induced representation of H(k) acting on Ui (i.e., the diagonal
block entries of �jH(k)) and si = dim V=Vi+1.

Let Ni be the kernel of the natural map  i : N ! Aut (V=Vi+1). Define the
representation 'i : G(k)=Ni ! GLn (k) by 'ijH(k) = �jH(k) and

'i(nNi) =
�
 i(n) 0

0 Id jVi+1

�
.

Define (G=Ni)+ to be the integral matrices with respect to this representation
'i, i.e.

(G=Ni)
+ = '�1�'i

�
G(k)=Ni

�
\
�
Mn(#k)

��
.

Assumption 2.3. If g 2 (G=Ni)+ then there exists g 2 G+ such that gNi = g.

An element n 2 Ni=Ni+1 � Aut (V=Vi+2) is determined by its action on a basis
u1, : : : , usi+1

for V=Vi+2. If i = 1, : : : , si n(uj) = uj + zj for some zj 2 Vi+1=Vi+2
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and n(uj) = uj if uj 2 Ui+1. The map n 7! (z1, : : : , zsi) defines an embedding of
Ni=Ni+1 as a k-subspace of (Vi+1=Vi+2)si . Therefore for each h 2 H there is a map

� (h) : Ni=Ni+1 ! (Vi+1=Vi+2)si

defined by restricting ��si
i+1 to the subspace Ni=Ni+1.

Denote by �H the Haar measure on H(k) normalized such that H(#k) has
measure 1 and �Ni=Ni+1

(respectively �N) be the Haar measure on Ni=Ni+1 (re-
spectively N) normalized such that Ni=Ni+1(#k) = '�1

i

�
'i(Ni=Ni+1) \ Mn(#k)

�
(respectively N(#k)) has measure 1. By Assumption 2.3, we can choose a topo-
logical splitting N =

Qc�1
i=1 Ni=Ni+1 such that N(#k) =

Qc�1
i=1 Ni=Ni+1(#k). Since

G(#k) = H(#k)N(#k) we have that �G = �H �
Qc�1

i=1 �Ni=Ni+1
. The problem in re-

ducing to the reductive part H of the group G arises from the fact that G+ 6= H+N+.
For each i = 1, : : : , c � 1 we need to define the following functions �i : H ! R

�i(h) = �Ni=Ni+1

�
fni 2 Ni=Ni+1jni�i(h) 2 Msi�ri+1

(#k)g
�
.

THEOREM 2.2. Under Assumptions 2.1, 2.2 and 2.3

ZG,�(s) =
Z

H+
j det �(h)js

c�1Y
i=1

�i(h)�H(h).

Proof. Denote by �X(g) the characteristic function on the subset X � G.
Then

ZG,�(s) =
Z

G(k)
�G+(g)j det �(g)js�G(g)

=
Z

H(k)
f (h)�H(h)

where f (h) =
Z

N
�G+(nh)j det �(nh)js�N(n)

(see [N] p. 87). Since j det �(nh)j = j det �(h)j, to prove the theorem it suffices to
prove that for every h 2 H(k)

Z
N
�G+(nh)�N(n) = �H+(h)

c�1Y
i=1

�i(h).(2.1)

We prove this by induction on c. The case c = 1 corresponds to the situation
in which G is already reductive. Suppose now that (2.1) is true for l < c. Let
�N =

Qc�2
i=1 �Ni=Ni+1

and �Nc�1 be the Haar measures on N = N=Nc�1 =  c�1(N)
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and Nc�1. Then �N = �N � �Nc�1 and

Z
N
�G+(nh)�N(n) =

Z
N

f (n)�N(n)

where

f (n) =
Z

Nc�1

�G+
�
nc�1 

�1
c�1(n)h

�
�Nc�1(nc�1),

and  �1
c�1(n) 2 N is a lifting of n 2 N to N chosen in such a way that if nh 2

(G=Nc�1)+ then  �1
c�1(n)h 2 G+. This choice is possible by our Assumption 2.3.

Now nc�1 
�1
c�1(n)h 2 G+ if and only if the following conditions are satisfied:

nh 2 (G=Nc�1)+ and

�
�

nc�1
�
 �1

c�1(n)h
��

= �(nc�1) � �
�
 �1

c�1(n)h
�

=

0
BBB@

Ir1 : : : 0 nc�1(1)
. . .

...
...

Irc�1 nc�1(c� 1)
Irc

1
CCCA

�

0
BBB@
�1(h) : : : � n(1)

. . .
...

...
�c�1(h) n(c� 1)

�c(h)

1
CCCA 2 Mn(#k)

where nc�1(i) 2 Mri,rc(k) and n(i) 2 Mri,rc(#k) and

'c�1(nh) =

0
BBB@
�1(h) : : : � 0

. . .
...

...
�c�1(h) 0

�c(h)

1
CCCA .

So nc�1 
�1
c�1(n)h 2 G+ if and only if nh 2 (G=Nc�1)+ and

0
B@

n(1)
...

n(c� 1)

1
CA +

0
B@

nc�1(1)
...

nc�1(c� 1)

1
CA ��sc�1

c (h) 2 Msc�1�rc(#k).

Therefore

f (n) = �(G=Nc�1)+(nh)

� �Nc�1

�
fnc�1 2 Nc�1 � Vsc�1

c j nc�1�c�1(h) 2 Msc�1�rc(#k)g
�

= �(G=Nc�1)+(nh) � �c�1(h).



LOCAL ZETA FUNCTIONS OF NILPOTENT GROUPS 53

The theorem then follows by applying the induction hypothesis to the group
G=Nc�1.

In x5 and x6 we shall show how to evaluate such integrals over reductive
groups in the case where the �i are characters on H. Unfortunately this is not
always the case. We give an example in x3 of a nilpotent Lie algebra L such that
the maps �i associated to the automorphism group of L are not characters.

Note that if �i(h) : Ni=Ni+1 ! Ni=Ni+1 � (Vi+1=Vi+2)si then � : H !

Aut Ni=Ni+1 defines a representation of H and �i(h) = j det � (h)j�1, a character
of H.

There are two classes of nilpotent groups for which the automorphism groups
have this property.

THEOREM 2.3. Suppose that Γ is a finitely generated torsion-free nilpotent group
and G is the automorphism group of the associated Lie algebra and H is the
connected component of the reductive part of G. Suppose further that either

(i) Γ is a class 2 nilpotent group; or

(ii) Γc = F=
cF where F is the free group in some variety and 
c is the cth
term of the lower central series.

Then �i : H ! R (i = 1, : : : , c�1) is a character of H where �i is defined as above.

Proof. Let L = L 
 Q be the Q-Lie algebra associated to Γ and Li = 
iL.
Then Li is a G-stable subspace and N, the unipotent radical of G, acts trivially
on Li=Li+1. Let u1, : : : , usi+1

be a basis for L=Li+2. Then for any z1, : : : , zs1 2

Li+1=Li+2, the linear map defined by

� : ui ! ui + zi for j = 1, : : : , s1

� : ui ! ui for j = s1 + 1, : : : , si+1

lifts to an automorphism of L. Hence Ni=Ni+1, under our identification, is the full
Q-space (Li+1=Li+2)s1 and �i(h) = ��s1

i : (Li+1=Li+2)s1 ! (Li+1=Li+2)s1 . As we
indicated above this implies that the maps �i : H ! R are characters of H.

3. Examples.

3.1. Free nilpotent groups and Lie algebras. Let L be the free nilpotent
Lie algebra over Q of class c � 2 on d � 2 generators and let K be a finite
extension of Q of degree n. In this section we calculate the zeta function �^#KL,p(s)
where L is a Z-Lie subring of L with the property that L = L 
Z Q. To do this
we shall use Theorem 2.2 above. We therefore need to know the structure of the



54 MARCUS P. F. DU SAUTOY AND ALEXANDER LUBOTZKY

automorphism group AutQ KL of KL as a Q-algebra. For a general Lie algebra
such a question may not have such a simple answer, even with knowledge of
AutK KL. However, for the free nilpotent Lie algebra KL, Segal [Se] has shown
that this automorphism group is relatively easy to determine. Once we have
calculated �^#KL,p(s), we can immediately deduce as a corollary of Proposition 1.2
an expression for the zeta function �^G,p(s) where G is either the free nilpotent
group F of class c � 2 on d � 2 generators or F#K (when this makes sense). We
explain what this qualification means at the end of this subsection. The calculation
of �^G,p(s) in this setting was already done in [GSS]. The reader who would prefer
to ignore the complication arising from extending the field may easily do so.
However since this extension was considered in [GSS], the fact that our answer
agrees with that of [GSS] does provide us with a useful check for the formula
of x2. Also it provides us with examples where the reductive group H over
Q is non-split but is the restriction of scalars of a split group H over K, i.e.
H(K) = GLd (K), for which we can calculate ZH(K),�,p(s). We shall generalize this
argument when we come to x6.

Let u1, : : : , ud be free generators for L. Let 
iL denote the ith term of the
lower central series of L and define ri = dimQ 
iL=
i+1L and si = dimQ L=
i+1L.
There are formulas given by Witt for these dimensions:

ri = 1=i
X
jji

�( j)di=j

where �( j) is the Möbius function (see for example [MKS] Theorem 5.11). There
exists a sequence of elements z1, : : : , zsc called a Witt basis for L with the property
that

(1) for si + 1 � l � si+1, zl = [uj1(l), : : : , uji+1(l)] (j1(l), : : : , ji+1(l) 2 f1, : : : , dg)
is a homogeneous Lie commutator of length i+1 in the free generators u1, : : : , ud;
and

(2) zsi+1, : : : , zsc form a linear basis over Z for the Lie elements of length
� i + 1.

See for example [MKS] x5.6.
We choose the lattice L to be the Z-span of the basis fz1, : : : , zscg and define

Li+1 to be the Z-span of fzsi+1, : : : , zsi+1
g. We then have a decomposition

L = L1 � � � � � Lc.

Note that if we take any Z-Lie subring L0 of KL such that L = L0
Z Q, then
for almost all primes p

�^L0,p(s) = �^#KL,p(s).

So by choosing the lattice L we are loosing very little. Let ft1, : : : , tng be a basis
for #K over Z then ftizj j i = 1, : : : , n; j = 1, : : : , scg is a Z-basis for the Lie
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ring #KL. This basis defines a Q-rational representation � : G ! GLnsc (where
G(F) = AutF (KL
Q F) for every field extension F of Q) with the property that
G(Z) = AutZ (#KL). By Proposition 1.1, for each prime p,

�^#KL,p(s) =
Z

G+
p

j det �(g)js�G(g)

where G+
p = ��1���G(Qp)

�
\Mnsc(Zp)

�
.

Let R = K 
Q Qp. (Note that R is not a field but is rather the direct product
of fields Kp for primes p of #K dividing p.) Then G(Qp) = AutQp (RL). Each
Qp-linear transformation � of RL is represented by a c � c matrix (�ij) with
�ij 2 HomQp (RLi, RLj). We quote now a result from [Se] which determines the
structure of Gp = G(Qp).

PROPOSITION 3.1. Gp = Γp oAutQp R where Γp consists of all Qp-linear trans-
formations � = (�ij) of RL satisfying

�11 2 AutR RL1 = GLd (R)

�1j 2 HomR (RL1, RLj) (2 � j � c� 1)

�1c 2 HomQp (RL1, RLc)

�ij =  ij(�11, : : : ,�1,j�i+1) (2 � i � j � c)

�ij = 0 (i > j)

where  ij are Q-polynomial maps depending only on L. Also if �11 = IdRL1 and
�ij = 0 for 2 � j � i then �kk = IdRLk and �kj = 0 for 2 � k < j � i + k.

The group Γp is the connected component of the Qp-algebraic group Gp.
Note that it is almost the Qp-points of the restriction of scalars RK=Q AutK (KL).
It is slightly larger because in the top right-hand corner we only demand that
�1c 2 HomQp (RL1, RLc) rather than �1c 2 HomR (RL1, RLc).

Let Ni be the kernel of the map Γp ! AutQp

�
RL=
i+1(RL)

�
for each i =

1, : : : , c. Each Ni can be identified with the subgroup of Γp consisting of � = (�ij)
with �11 = IdRL1 (which implies �ii = IdRLi) and �1j = 0 for 2 � j � i (which
implies �kj = 0 whenever 2 � k < j � i+k). The group N1 is known as the group
of IA-automorphisms and in this case coincides with the unipotent radical of Γp.
If we set H to be the subgroup of Γp consisting of all diagonal elements � = (�ij)
with �ij = 0 for all i 6= j, then H is the reductive part of Γp and is isomorphic
with GLd (R).

We are now in a position to prove that the three assumptions of the previous
section are true in this setting.
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LEMMA 3.2. (1) Gp(Zp) maps onto Gp=Γp.
(2) The representation � decomposes into block form such that �jH is block

diagonal and �jN1 is unitriangular.
(3) If g 2 (Γp=Ni)+ then there exists g 2 Γ+

p such that gNi = g. (Recall that
(Γp=Ni)+ is defined with respect to the representation 'i : Γp=Ni ! GLnsc(Qp)
defined in x2.)

Proof. (1) AutQp R fixes the subring #K 
Z Zp and hence also the submodule
#KL 
 Zp. So AutQp R � Gp(Zp) and hence Gp(Zp) maps onto Gp=Γp.

(2) is immediate.
(3) Since fz1, : : : , zscg is a Z-basis for the Lie ring L with the property that

each element of the basis is a homogeneous Lie commutator in the generators
fz1, : : : , zdg = fu1, : : : , udg, if g 2 Γp and the coefficients of g(tiuj) (for i =
1, : : : , n and j = 1, : : : , d) with respect to the basis ftizjji = 1, : : : , n; j = 1, : : : , scg

are all integral then also the coefficients of g(tizj) (for i = 1, : : : , n and j =
1, : : : , sc) are integral. Hence the polynomial maps  ij of Proposition 3.1 can
be defined over Z. Hence if g = (�ij) 2 Γp then g 2 Γ+

p if and only if �1j 2

HomZp (#KL1 
 Zp,#KLj 
 Zp) for 1 � j � c.
Choose an element g0 = (�0ij) 2 Γp with the property that g0Ni = g. Then

�1j 2 HomZp (#KL1 
 Zp,#KLj 
 Zp) for 1 � j � i. We are required to find
g 2 Γ+

p such that g0Ni = gNi. Set g = (�ij) where

�ij = �0ij for j � i

�ij = 0 for j > i

and �ij =  ij(�11, : : : ,�1j�i+1) for 2 � i � j � c.

By Proposition 3.1, g 2 Γp and g0Ni = gNi. But now �1j 2 HomZp (#KL1 


Zp,#KLj 
 Zp) for 1 � j � c. Hence g 2 Γ+
p . This proves (3).

Lemma 3.2 allows us now to apply Theorem 2.2. Combining this with The-
orem 2.3 we have

�^#KL,p(s) =
Z

G+
p

j det �(g)js�G(g)

=
Z

H+
p

j det �(h)js
c�1Y
i=1

j det �i(h)j�1�H(h)

=
Z

H+
p

cY
i=1

j det �i(h)js
c�1Y
i=1

j det �i(h)j�1�H(h)

where �i : H ! Aut (Ni=Ni+1) is the representation of H defined by restricting
�
�sin
i+1 to the subspace Ni=Ni+1 of (RLi+1)sin.



LOCAL ZETA FUNCTIONS OF NILPOTENT GROUPS 57

To complete the calculation we must analyze the representations �i of H
acting on RLi and the representations �i of H. From our description of Ni, for
i < c � 1 we can identify Ni=Ni+1 with HomR (RL1, RLi+1) = Mr1�ri+1

(R) �
Mr1n�ri+1n(Qp) and Nc�1 with HomQp (RL1, RLc) = Mr1n�rcn(Qp). Hence

j det �i(h)j = j det �i+1(h)jr1 for i < c� 1

and j det �c�1(h)j = j det �c(h)jr1n.

This leads to the following expression:

�^#KL,p(s) =
Z

H+
p

j det �1(h)js
c�1Y
i=2

j det �i(h)js�r1j det �c(h)js�r1n�H(h).(3.1)

By Proposition 3.1, we know that �i(h) = �ii =  ii(�11) and is thus determined
by the matrix �1(h) = �11. The following lemma expresses the determinant of
�i(h) as a function of �1(h). The proof is essentially a reconstruction (and small
correction) of the proof of Lemma 7.8 [GSS] in our context.

LEMMA 3.3. j det �i(h)j = j det �1(h)jiri=d.

Proof. Since by Proposition 3.1 H is in fact the restriction of scalars of a
group over R we can in fact consider �(h) as an element of GLsc (R) where the
representation is taken with respect to a Witt basis. Without loss of generality we
may suppose that i = c. Since R = K
Q Qp is a direct product of the fields Kp for
the primes p of #K dividing p, it suffices to consider h 2 AutQp (L
K Kp). Let #p
denote the ring of integers of Kp, then #p is a principal ideal domain. Contrary
to the statement in the proof of Lemma 7.8 [GSS], �1(h) is not necessarily
diagonalizable. However we are required to establish an algebraic identity on
the entries of the matrix �(h) for h 2 H. Hence it suffices to prove this identity
on a Kp-Zariski dense subset. Since the subset of H for which �1(h) 2 GLd (Q)
is diagonalizable over GLd (Q) is Kp-Zariski dense, we may assume that �1(h) 2
GLd (Q) is diagonalizable over GLd (Q).

We may further suppose that we have chosen the Q-basis fu1, : : : , udg for
L1
Q with the property that �1(h) is a diagonal matrix with respect to this basis
since a change of basis does not affect the calculation of the determinant. We
extend this basis to a Witt basis fz1, : : : , zscg for L 
 Q. Then by property (1)
of a Witt basis �c(h) is also a diagonal matrix with entries �j1(l) � � ��jc(l) for
sc�1 + 1 � l � sc where �1(h)uj = �juj.

Setting aj = ordp �j and j#p : pj = q we have

j det �c(h)j =
scY

l=sc�1+1

qaj1(l)+���+ajc(l) = qf (a1,:::,ad).
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Note however that for any permutation � of f1, : : : , dg we could have chosen a
different ordering u01 = u�(1), : : : , u0d = u�(d) of the free generating set resulting in
a different basis f[u0j1 , : : : , u0jc]g for Lc 
Q. With respect to this basis

j det �c(h)j = qf (a�(1),:::,a�(d)).

Hence f (a�(1), : : : , a�(d)) = f (a1, : : : , ad) for any permutation �. Thus f (a1, : : : , ad)
is a sum of cmc terms aj in which each of a1, : : : , ad occurs equally often, and
so

f (a1, : : : , ad) = cmc(a1 + � � � + ad)=d.

The result follows.

Combining this lemma with (3.1) we have:

COROLLARY 3.4.

�^#KL,p(s) =
Z

H+
p

j det �1(h)jas�b�H(h)

where a = (r1 + 2r2 + � � � + crc)=d and b = (2r2 + � � � + (c� 1)rc�1) + ncrc.

We now turn to the question of evaluating this integral.
As we pointed out in the proof of Lemma 3.2 (3), h 2 H+

p if and only if

�1(h) = �11 2 AutR (RL1) \ HomZp (#KL1 
 Zp,#KL1 
 Zp).

Since K
Qp (respectively #K 
Zp) is a direct product of Kp (respectively #Kp)
for primes p of #K dividing p, by choosing a basis t1, : : : , tnp for #Kp over Zp

where [Kp : Qp] = np, we can write

AutR (RL1) \ EndZp (#KL1 
 Zp) =
Y
pjp

AutKp (KpL1) \ EndZp (#KpL1 
 Zp)

=
Y
pjp

GLd (Kp) \Mdnp(Zp)

=
Y
pjp

GLd (Kp)+.

If �11 = (hp) 2 AutR (RL1) =
Q

pjp AutKp (KpL1) then det (�11) =
Q

pjp det (hp).
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Piecing all this information together we can write

�^#KL,p(s) =
Y
pjp

Z
GLd (Kp)+

j det (hp)jas�b�GLd (Kp)(hp)

(since �H = �GLd (R) =
Q

pjp �GLd (Kp) where �GLd (Kp) is normalized such that
GLd (#Kp) has measure 1).

However, we have already given an expression for the integrals on the right
of this equality in Example 1.4 (1). Hence to summarize we have:

THEOREM 3.5. Let L be the free nilpotent Lie algebra over Q of class c � 2
on d � 2 generators and let K be a finite extension of Q of degree n. Let L be the
Z-Lie subring of L spanned by a Witt basis for L. Then for each prime p

�^#KL,p(s) =
Y
pjp

d�1Y
i=0

�K,p(as� b� i)

where a = (r1 + 2r2 + � � � + crc)=d and b = (2r2 + � � � + (c � 1)rc�1) + ncrc,
ri = dimQ 
iL=
i+1L and �K,p(s) is the Euler p-factor of the Dedekind zeta function
�K(s).

Let F denote the free nilpotent group of class c � 2 on d � 2 generators.
As explained in section 7 of [GSS], if c = 2 then F#K is a torsion-free finitely
generated nilpotent group which we shall call G. But in general, F#K is not a
group. However F#K
Zp is a pro-p group for all p > c, and for such p we write
F#K
Zp = Ĝp and define

�^G,p(s) = �^Ĝp
(s)

abusing notation as in [GSS]. As we explained in x1, to each torsion-free finitely
generated group there is associated a Lie algebra over Q. In the present setting
the Lie algebra associated with F is just the free nilpotent Lie algebra L over
Q. The injective map log : F ! L maps Ff onto a Z-Lie subring L of L for
some f 2 N. For those p for which Ĝp is defined log Ĝf

p = #KL 
 Zp � RL. In
Proposition 1.2 we saw that for almost all primes p

�^Ĝp
(s) = �^#KL
Zp(s).

Therefore Theorem 3.5 has the following corollary:
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COROLLARY 3.6. For almost all primes p

�^G,p(s) =
Y
pjp

d�1Y
i=0

�K,p(as� b� i)

where a = (r1 + 2r2 + � � � + crc)=d and b =
�
2r2 + � � � + (c� 1)rc�1

�
+ ncrc and ri is

the rank of 
i(F)=
i+1(F).
Note that in fact by working directly in the group G one can get the result

of Corollary 3.6 for all p if c = 2 or otherwise for p > c (see [GSS]).
We can also consider the graded Lie ring gr (L) =

Lc
i=1 Li=Li+1. The auto-

morphism group of gr (L)
 R has the same structure as AutQp (RL) described in
Proposition 3.1 (with different polynomial maps  ij). Hence we can perform the
same calculation for gr (L) to calculate �^gr (L),p(s).

Definition 3.7. We shall call two Lie rings L1 and L2 isospectral if they are
non-isomorphic but

�^L1,p(s) = �^L2,p(s).

We then have the following:

THEOREM 3.8. If gr (L) =
Lc

i=1 Li=Li+1 denotes the graded Lie ring of the Lie
ring L of Theorem 3.5 then gr (L) and L are isospectral.

3.2. Nilpotent groups and Lie algebras free in some variety. We have in
fact done enough work in the previous section to write down a general formula
for a nilpotent Lie algebra free in some variety. Let F be the free Q-Lie algebra
in some variety and let Fc = F=
cF , a nilpotent Lie algebra of class c � 2 on
d generators, say. Then Fc is the surjective image of L, the free nilpotent Lie
algebra over Q of class c � 2 on d generators considered in the previous section.

Let u1, : : : , ud be generators for Fc=
2Fc and define ri = dimQ 
iFc=
i+1Fc

and si = dimQ Fc=
i+1F . Then we have the concept of a Witt basis z1, : : : , zsc of
Fc as defined in x3.1. (To construct such a basis we can take the image of a Witt
basis in L and choose a subset which is a basis for Fc as a Q-vector space.)

We again take the lattice L to be the Z-span of the basis z1, : : : , zsc . Note
that if we had started with a Z-Lie algebra L0 free in some variety (perhaps with
torsion) then, for almost all primes p, �^L0=
cL0,p(s) = �^L,p(s) for some such lattice
L inside Fc.

Let G = AutQ (Fc), then this choice of lattice defines a Q-rational representa-
tion � : G ! GLsc . It is not hard to verify that the freeness of Fc implies that the
structure of G(Qp) is the same as that described in Proposition 3.1. The choice of
our lattice as the Z-span of a Witt basis implies that, as in Lemma 3.2, Assump-
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tions 2.1–2.3 are true and hence we can apply Theorem 2.2 and Theorem 2.3 to
calculate �^L,p(s):

�^L,p(s) =
Z

G+
p

j det �(g)js�G(g)

=
Z

H+
p

cY
i=1

j det �i(h)js
c�1Y
i=1

j det �i(h)j�1�H(h)

=
Z

H+
p

j det �1(h)js
cY

i=2

j det �i(h)js�r1�H(h).

PROPOSITION 3.9. (1) j det �i(h)j = j det �1(h)jiri=d.
(2) h 2 H+

p if and only if �1(h) 2 Mr1(Zp).

Proof. (1) The proof of Lemma 3.3 carries through in our setting since it
depends only on property (1) of the Witt basis and the fact that the freeness of
Fc implies that any permutation of the basis u1, : : : , ud induces an automorphism
of L.

(2) This follows from the fact that the polynomials  ij defined in Proposi-
tion 3.1 will also be defined over Z in our setting.

Since H+
p = ( GLd)+

p we have exactly the same calculation as above:

THEOREM 3.10. Let F be the free Q-Lie algebra in some variety and let Fc =
F=
cF . Let L be Z-Lie subring ofFc spanned by a Witt basis forFc. Then for each
prime p

�^L,p(s) =
d�1Y
i=0

�p(as� b� i)

where a = (r1 + 2r2 + � � � + crc)=d and b = (2r2 + � � � + crc), ri = dimQ 
iL=
i+1L

and �p(s) = 1=(1� p�s).

We preferred in the above to ignore the question of calculating �^#KL,p(s)
for some field extension K of Q. If the variety is such that Fc satisfies the
rigidity condition of x2 of [Se] then AutQ (KFc) has the same structure as in
Proposition 3.1, i.e., almost the restriction of scalars RK=Q AutK (KFc) except
for the top right-hand corner. In this case the above theorem can be refined to
read exactly as in Theorem 3.5.

In the previous section we gave formulas for ri for the free nilpotent groups.
Bachmuth considered the variety of metabelian Lie algebras giving corresponding
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formulas for ri:

ri = d(i� 1)

 
i + d � 2

d � 2

!

(see Lemma 3 of [Ba]).
Given these explicit expressions, is it possible to find a free nilpotent Z-Lie

algebra L1 of class c1 and a free nilpotent-metabelian Z-Lie algebra L2 of class
c2 which are isospectral (in the sense of Definition 3.7)? Despite some concerted
effort with the aid of a computer we were unable to find such an example.

As in x3.1 if we take a torsion-free finitely generated group F that is free
in some variety then the Lie algebra L over Q associated to Fc = F=
c+1F will
be free in the corresponding variety. To prove this recall that the Lie algebra
corresponds under the Malcev correspondence to the the Malcev completion FQ

c
of Fc. We can then use the Malcev correspondence to check that the universal
property is satisfied for the Lie algebra L. The injective map log : Fc ! L then
maps Ff

c onto a Z-Lie subring L of L. By Proposition 1.2 we can then deduce:

THEOREM 3.11. Let Fc = F=
c+1F where F is a torsion-free finitely generated
group free in some variety. Then for almost all primes p

�^Fc,p(s) =
d�1Y
i=0

�p(as� b� i)

where a = (r1 + 2r2 + � � � + crc)=d, b = (2r2 + � � � + crc) and ri is the rank of

i(Fc)=
i+1(Fc).

3.3. Realizing classical groups. In this section we construct examples of
Zp-rings whose automorphism groups modulo their unipotent radicals are classical
groups.

Let V be a vector space of dimension n over Qp. We assume that there is
defined on V a nonsingular bilinear scalar product � : V � V ! Qp. We can use
this scalar product to define a Qp-algebra structure on L = V � Qp. For (x1, z1)
and (x2, z2) 2 L define

(x1, z1) � (x2, z2) = (0,�(x1, x2)).

This makes L into a Qp-algebra with center Z(L) = 0�Qp.
Choose a basis fx1, : : : , xng for V and define z to be an element of the center

Z(L) of L with the property that �(xi, xj) 2 Zpz for all i, j = 1, : : : , n. Then
the Zp-span of fx1, : : : , xn, zg is a subring of L which we shall call L. We shall
calculate �^L,p(s). To do this we must know the structure of Gp = AutQp (L). This
is provided by the following lemma. We denote by GO (�) the nonsingular linear
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transformations T of V which are similitudes, i.e., which satisfy the condition
�(Tx1, Tx2) = �(T)�(x1, x2) for all x1, x2 2 V where �(T) 2 Q�

p.

LEMMA 3.12. Gp is the group consisting of all Qp-linear transformations

� =
�
�11 �12

0 �22

�
2 GLn+1 (Qp)

satisfying

�11 2 GO (�)

�22 = �(�11) 2 Q�
p

�12 2 HomQp (V , Qp) �= Qn
p.

Proof. Suppose that � is an automorphism of L. Then �(xi) = �11(xi) + �iz
where �11 2 GLn (Qp) and �(z) = �22z since � preserves the centre Z(L). Then

�(xi) � �(xj) = �(�11(xi),�11(xj)).

Since � is an automorphism we have

�(xi) � �(xj) = �(xi � xj) = �22�(xi, xj).

Hence �11 2 GO (�) and �22 = �(�11).
That such a map � defines an automorphism of L is an easy exercise to

check.

The reductive part Hp of the group Gp is isomorphic then to the classical
group GO (�) and the unipotent radical N1 is an abelian group isomorphic to Qn

p.
For this algebraic group (and its representation) the three assumptions 2.1–2.3
are satisfied:

LEMMA 3.13. (1) Gp is connected.
(2) The representation � : Gp ! GLn+1 (Qp) with respect to the basis

fx1, : : : , xn, zg decomposes into block form such that �jHp is block diagonal and
�jN1(Qp) is unitriangular.

(3) If g 2 (Gp=N1)+ then there exists g 2 G+
p such that gN1 = g.

Proof. (1) is well-known and (2) is immediate. (3) Choose an element g0 =
(�0ij) 2 Gp with the property that g0N1 = g. If we set g = (�ij) where �ii = �0ii for
i = 1, 2 and �12 = 0 then g 2 G+

p by Lemma 3.12 and g0N1 = gN1.
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We can therefore apply Theorem 2.2 to evaluate �^L,p(s). Since N1 is identified
with Qn

p the map �(h) of Theorem 2.2 is just the character j det �1(h)j�n. Hence

�^L,p(s) =
Z

H+
p

j det �1(h)js�nj det �2(h)js�Hp(h)

where �1 : Hp ! GO ( f ) � GLn (Qp) is the natural representation with respect to
the basis fx1, : : : , xng and �2 : Hp ! Qp is the representation �2(h) = �(T) where
T = �1(h). Let A be the matrix representing our bilinear form, i.e. aij = �(xi, xj).
Then

TA(tT) = �(T)A

where (tT) denotes the transpose of T . Taking determinants of both sides we see
that

j det �2(h)j = j�(T)j = j det Tj2=n = j det �1(h)j2=n.

Now if �1(h) 2 Mn(Zp) then �(�1(h)) 2 Zp and hence �2(h) 2 Zp. Thus the
integral points are determined by �1 and we can write

LEMMA 3.14.

�^L,p(s) =
Z

GO (�)+
j det hjs(1+2=n)�n�GO (�)(h).

This example realizes concretely the zeta functions associated to classical
groups as the zeta functions of some Zp-ring L.

If the form is skew symmetric then the corresponding ring has the structure
of a Zp-Lie ring. Suppose that A = (aij) defines such a skew symmetric form.
Define a group by the following presentation:

G = hx1, : : : , xn, zj[xi, xj] = zaij , [xi, z] = 1i.

G is a class two nilpotent group. The Lie ring associated then to the pro-p
completion of G is precisely the ring constructed above corresponding to the skew
symmetric form defined by A. In this manner we can realize the zeta functions of
classical groups defined by skew symmetric forms as zeta functions of nilpotent
groups (with a change of variable).

For example, if we take

G = hx1, x2, x3, y1, y2, y3, zj[xi, yj] = z�ij , [yi, yj] = [xi, xj] = [xi, z] = [yi, z] = 1i
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then using Lemma 3.14 and Example 1.4 (2) (iii) we get

�^G,p(s) =
(1 + p19�4s + p20�4s + p21�4s + p22�4s + p41�8s)

(1� p18�4s)(1� p20�4s)(1� p22�4s)(1� p23�4s)
.

It is proved in [duS5] that the global zeta function �^G (s) =
Q
�^G,p(s) cannot

be meromorphically continued to the whole complex plane but has a natural
boundary.

In x5 we give a formula for ZG,�(s) for a Qp-split reductive group G involving
the combinatorial data associated to G. In the case where the group of similitudes
of � splits in Qp we can feed in the corresponding data for G = GO (�) to get
similar explicit expressions to Examples 1.4. We record some of these examples
(calculated with the aid of a computer) in the forthcoming survey [duS5]. Notice
that if we had started with a form defined over Q then GO (�)(Qp) may have a
different structure depending on the prime p (e.g., the group may be Qp-split for
some primes but not for others). This behavior will be consistent with a positive
answer to Question 0.1 about the uniformity in p of �^L,p(s) and will be considered
in the sequel to this paper when we consider non-split reductive groups ([duS6]).

3.4. The Lie algebra of upper triangular matrices. We give in this section
an example of a Lie algebra L with the property that the maps �i : H ! R
of Theorem 2.2 which we associated to the automorphism group of L are not
characters of the group H. Nonetheless it is still possible to calculate the resulting
integral with the encouraging corollary that the result still satisfies the functional
equation detailed in the Introduction.

Let U0
n(Qp) denote the Lie algebra of all nilpotent upper triangular n � n

matrices over Qp and set L = U0
n(Qp)=
c+1U0

n(Qp) for some 3 � c + 1 � n. In
[Se] Segal gives a description of AutQp L=N1 where N1 denotes the group of
IA-automorphisms. We also need knowledge of the structure of N1. It is possible
to give a general description of N1 but here we content ourselves with a specific
example.

We consider the algebra L = U0
4(Qp) of class 3. Let Gp = AutQp L. In fact

for this example the description of Gp=N1 in [Se] is incorrect. We choose a
basis for L given by the standard unit matrices eij for 1 � i < j � 4. Then
fui = eii+1 j i = 1, 2, 3g is a set of generators for L and fejj+i j 1 � j � 4� ig is a
basis for the ith layer 
iL=
i+1L. With respect to this basis we can represent Gp

in upper triangular block form (�ij) 1 � i, j � 3 where the ith row of the block
matrix is the image of fejj+i j 1 � j � 4� ig under the action of Gp. Let Dm(Qp)
denote the diagonal subgroup of GLm (Qp) and let Jm denote the “anti-diagonal”
m� m matrix as in [Se].
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PROPOSITION 3.15. Gp consists of all Qp-linear transformations � = (�ij) 2
GL6 (Qp) 1 � i, j � 3 satisfying

�11 =

0
@�1 0 0

0 �2 0
0 0 �3

1
A � J�3 2 D3(Qp)o hJ3i

�12 =

0
@ �11 �12

�21 �22

�31 ��11

1
A 2 M3,2(Qp)

�13 =

0
@ ��
�

1
A 2 M3,1(Qp)

�22 =
�
�1�2 0

0 �2�3

�
� (� J2)� 2 D2(Qp)o hJ2i

�23 =  (�11,�12) 2 M2,1(Qp)

�33 = �1�2�3 2 Q�
p

�ij = 0 for (i > j)

where � 2 f1,�1g and  is a Z-polynomial map.

Proof. To prove this we consider the sets

w? = fx 2 L=
2(L) j [w, x] 2 
3(L)g

for some w � a1u1 + a2u2 + a3u3 mod 
2(L). Then

dim w? = 3 if w � 0

= 2 if w 6� 0 and a2 = 0

= 1 if a2 6= 0.

(Note that in the proof of Proposition 5 of [Se] a number of cases are missing
from the analysis of dim w?.) Suppose that �11 = (�ij) 2 GL3 (Qp). Since the
dimensions of u?i should be preserved under automorphisms of L we have that
�12 = �32 = 0 and hence �22 6= 0. We now consider certain commutator identities
which yield the following relations on �ij:

(1) [u1, [u1, u2]] = 0 implies �11�22�13 = 0

(2) [[u2, u3], u3] = 0 implies �31�22�33 = 0

(3) [[u1, u2], u2] = 0 implies �11�22�23 + �13�22�21 = 0

(4) [u2, [u2, u3]] = 0 implies �31�22�23 + �33�22�21 = 0.
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These relations on �ij together with the fact that �11�33 � �13�31 6= 0 imply that
either

�(ui) = �iui mod 
2(L) for i = 1, 2, 3

or

�(ui) = �iu4�i mod 
2(L) for i = 1, 2, 3.

It is an easy exercise to check that in fact

�(ui) = �iui for i = 1, 2, 3

and

�(ui) = �iu4�i for i = 1, 2, 3

do determine automorphisms of L and that �22 and �33 have the description
given in the statement of our proposition. (Consider for example conjugation (in
M4(Qp)) by matrices in D4(Qp) together with the map w ! �t(J4wJ4).) Hence
we can assume now that � acts trivially on L=
2(L). Suppose that

�(ui) = ui + �i1e13 + �i2e24 mod 
3(L)

then since [u1, u3] = 0 we have that

[�u1,�u3] = (�11 + �32)e14 = 0

i.e. �11 = ��32. This is the only relation forced on N1 and it is then a straight-
forward exercise to check that all such maps define automorphisms of L.

We can generalize this approach to realize a description of

AutQp U0
n(Qp)=
c+1U0

n(Qp).

The key is to consider the sets

w?(l) = fx 2 L=
l+1(L) j [w, x] 2 
l+2(L)g

for l = 1, : : : , c� 1.
The reductive part Hp of the connected component of Gp in our present

example is then just the torus D3(Qp). We consider now the maps �i : Hp ! R
for i = 1, 2 defined in Theorem 2.2.
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LEMMA 3.16. Let h = (�ij) 2 Hp. Then

�1(h) = j�1j
�2j�2j

�5j�3j
�2 � ( minfj�1j

�1, j�3j
�1g)

�2(h) = j�1�2�3j
�3.

Proof. Recall the definition of �i(h):

�i(h) = �Ni=Ni+1

�
fni 2 Ni=Ni+1 j ni�i(h) 2 M3,3�i(Zp)g

�
where ni�i(h) = �01i+1 � �i+1i+1 and ni = (�0ij). (Note that since the map  in
Proposition 3.15 is defined over Z if �013 � �33 2 M3,1(Zp) then �023 � �33 2

M2,1(Zp).)
If i = 1 then 0

@ �11 �12

�21 �22

�31 ��11

1
A��1�2 0

0 �2�3

�
2 M3,2(Zp)

if and only if

v(�i1) � �v(�1�2) for i = 2, 3

v(�i2) � �v(�2�3) for i = 1, 2

v(�11) � maxf�v(�1�2),�v(�2�3)g.

Hence

�1(h) = j�1�2j
�2j�2�3j

�2 � ( minfj�1�2j
�1, j�2�3j

�1g).

The calculation for �2(h) is straightforward.

Hence �1 : Hp ! R is not a character of Hp. Nonetheless we can still
calculate �^L,p(s) where L is the lattice spanned by the basis feij j 1 � i < j � 4g.
The Assumptions 2.1–2.3 are satisfied so we can apply Theorem 2.2:

�^L,p(s) =
Z

H+
p

j det �1(h)jsj det �2(h)jsj det �3(h)js�1(h)�2(h)�H(h)

where �i(h) = �ii. Then

�^L,p(s) =
Z

(�1,�2,�3)2(Z�p )3
j�1j

3s�5j�2j
4s�8j�3j

3s�5

� ( minfj�1j
�1, j�3j

�1g)d�1d�2d�3

=
(1 + p�3s+5)

(1� p�4s+8)(1� p�3s+5)(1� p�6s+11)
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where d�i is the Haar measure on the multiplicative group Q�
p normalized such

that �i(Z�p) = 1. (Note that �i(pnZp n pn+1Zp) = �i(pnZ�p) = 1.)
Hence �^L,p(s) satisfies the functional equation

�^L,p(s)jp!p�1 = �p�10s+19�^L,p(s).

Calculations of some higher dimensional examples hint at the fact that we still
have a functional equation despite the fact that the �i are not in general characters.

4. Zeta functions for algebraic groups over a global number field. In
this section we consider a linear algebraic group G defined over a field K, where
K is a finite extension of Q, together with a K-rational representation

� : G ! GLn .

For each prime p of K recall from Definition 0.3 (ii) that

ZG,�,p(s) =
Z

G+
p

j det �(g)jsp�G(g)

where G+
p = ��1���G(Kp)

�
\Mn(#Kp)

�
. We will prove that for almost all primes

p of K, G(Kp) and the representation � : G(Kp) ! GLn (Kp) satisfy the Assump-
tions 2.1, 2.2 and 2.3 of section 2. This implies then that for almost all primes
p we can replace ZG,�,p(s) by an integral over the connected component of the
reductive part of G as detailed in Theorem 2.2.

We shall keep track in a note at the end of each lemma which primes we
are excluding. We begin with proving that Assumption .1 holds for almost all
primes p.

LEMMA 4.1. For almost all primes p, G(#Kp) maps onto G(Kp)=G0(Kp) where
G0 is the connected component of G.

Proof. There exists a finite K-algebraic group F such that G(K0) = G0(K0)F(K0)
for any field extension K0 of K (see [BS] Lemma 5.11). There exists a finite ex-
tension L of K such that F(L0) = F(L) for any L0 � L. Let (aij) 2 F(L) then, for
almost all primes p of K, either aij 62 Kp or aij 2 #Kp . Since F(L) is finite, for
almost all primes p,

F(Kp) = F(L) \ GLn (Kp) � GLn (#Kp).

This proves the lemma.

Note. We exclude at this stage primes p for which an element of the finite
group F(Kp) is not integral.
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The following fact that choosing an equivalent K-rational representation for
G does not affect ZG,�,p(s) for almost all primes p will be important here and
in x6.

LEMMA 4.2. Let �0 : G ! GLn be an equivalent K-rational representation of
�; i.e., there exists A 2 GLn (K) such that �0(x) = A�(x)A�1 for all x 2 G(K). Then
for almost all primes p of K

ZG,�0,p(s) = ZG,�,p(s).

Proof. The integrand j det �(g)js is independent of a choice of equivalent
representation. All we have to worry about is the subset G+

p over which we
are integrating. For almost all primes p, A 2 GLn (#Kp). In this situation if
�(g) 2 Mn(#Kp) then

�0(g) = A�(g)A�1 2 AMn(#Kp)A�1 = Mn(#Kp)

and conversely. Hence ZG,�0,p(s) = ZG,�,p(s).

Note. Here we are excluding primes p for which A or A�1 62 Mn(#Kp).

We show next that we can choose an equivalent representation satisfying
Assumption 2.2. Recall that N(K) is the unipotent radical of G(K) and H(K) is
the connected component of the reductive part of G(K).

LEMMA 4.3. There exists an equivalent K-rational representation �0 of � such
that �0 decomposes into block form where �0jH(K) is block diagonal and �0jN(K) is
unitriangular.

Proof. We are required to decompose V = Kn into a direct sum V = U1 �

� � � � Uc of H(K)-stable subspaces Ui such that N(K) acts trivially on Vi=Vi+1

where Vi = Ui�� � ��Uc. Let 0 6= v 2 V be a fixed point of the action of N(K) on
V , the existence of which is guaranteed by Lie-Kolchin. Set Uc = vG(K). Then Uc

is H(K)-stable and N(K) acts trivially on Uc. There exists an H-stable splitting
V = W � Uc. Now proceed by induction.

Assumption 2.3 will follow as a corollary of the following result:

LEMMA 4.4. Let K be be a field of characteristic zero and G1 and G2 � GLn (K)
be K-linear algebraic groups. Suppose

' : G1 ! G2
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is a K-rational epimorphism with ker' unipotent. Then there exists a polynomial
section defined over K

 : G2 ! G1

such that ' �  = id.

Proof. We assume first that G1 and G2 are both unipotent. Denote by L(Gi) the
Lie algebra of Gi. The homomorphism L(') = log jG2 � ' � exp jL(G1) : L(G1) !
L(G2) splits by a linear transformation '1 : L(G2) ! L(G1). Now  = exp jL(G1)�

 1�log jG2 defines a section with the property that '� = id. Since Gi is unipotent,
exp jL(G1) and log jG2 are both polynomial maps defined over K and hence  is a
polynomial section defined over K.

In the general case we write Gi = Ni o Hi as a semi-direct product of its
unipotent radical Ni and its reductive part Hi. We can choose H2 such that 'jH1

induces an isomorphism from H1 to H2. Let  1jH2 = '�1jH2 which, as a morphism
of algebraic groups, is defined by polynomials over K. Let  2 : N2 ! N1 be the
polynomial section guaranteed by the first part of this proof. We define  : G2 !

G1 by  (n2h2) =  2(n2) 1(h2). Then  is a polynomial section defined over K
with ' �  = id.

COROLLARY 4.5. For almost all primes p of K, if g 2
�
G(Kp)=Ni(Kp)

�+ (where
the integral points are taken with respect to the representation 'i of G(Kp)=Ni(Kp)
defined in x2) then there exists g 2 G(Kp)+ such that gNi(Kp) = g.

Proof. Let ' : �
�
G(K)

�
! 'i

�
G(K)=Ni(K)

�
be the natural map with ker-

nel the unipotent group �
�
Ni(K)

�
. By the previous lemma there exists a poly-

nomial section defined over K,  : 'i
�
G(K)=Ni(K)

�
! �

�
G(K)

�
such that if

g 2 'i
�
G(K)=Ni(K)

�
and g =  (g) then g = '(g). This polynomial section ex-

tends for each prime p to a section  : 'i
�
G(Kp)=Ni(Kp)

�
! �

�
G(Kp)

�
. For

almost all primes p this polynomial section is defined over #Kp and hence if
g 2 'i

�
G(Kp)=Ni(Kp)

�
\ Mn(#K) then g =  (g) 2 �

�
G(Kp)

�
\ Mn(#K). This

proves the corollary.

Note. The primes excluded at this stage are those for which the coefficients
of the polynomials defining the section  are not integers in the localization Kp.

Lemmas 4.1, 4.3 and Corollary 4.5 together with the results of section 2 then
give us the following:

COROLLARY 4.6. Let G be a K-algebraic group and

� : G ! GLn
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a K-rational representation where K is a finite extension of Q. Then for almost all
primes p,

ZG,�,p(s) =
Z

H+
p

j det hjs
c�1Y
i=1

�i(h)�H(h)(4.1)

where H+
p = ��1���H(Kp)

�
\Mn(#Kp)

�
and �i are the functions on H(Kp) defined

in section 2.

In the next section we turn to the problem of evaluating an integral (4.1)
for a connected reductive algebraic group H. We shall have to impose further
conditions on the reductive group H to make this calculation.

5. An explicit finite form and a functional equation. Let G be a con-
nected reductive linear algebraic group defined over k where k is a finite exten-
sion of Qp. Denote by q the order of the residue field of k. Let � : G ! GLn be a
faithful k-rational representation. In x2 we were left having to consider integrals
of the form ZG,�,�,�(s) as defined in Definition 0.4 (i). At present we can only
deal with the case that � : H ! R is a character on H. Note that, by Theorem 2.3,
this is the case when G is the automorphism group associated with a class two
nilpotent group or a nilpotent group free in some variety. We therefore restrict
our analysis to the following integrals:

ZG,�,�1,�2 (s) =
Z

G+
j�1(g)jsj�2(g)j�G(g)

where �1,�2 2 Hom (G, Gm) are two characters on G. As in section 2 we shall
introduce various assumptions on our reductive group such that we can apply
the methodology of Igusa to calculate ZG,�,�1,�2 (s). Our setting requires a slight
generalization of Igusa’s calculation. Unlike section 4 it will not be the case
that all these assumptions are true for almost all primes when we start with
an algebraic group defined over a global number field. We shall make some
comments in this direction and hope in a future paper to remove the assumptions
we need at the moment to make Igusa’s calculation. But we content ourselves in
this paper with defining a class of algebraic groups for which an explicit finite
form for ZG,�,�1,�2(s) exists.

We shall be reasonably sparing with details since these can be found in Igusa’s
paper [I].

We can write G = S.G0 where S is a central k-torus and G0, the derived group,
is a connected semisimple algebraic group and S \ G0 �= �m where �m denotes
the group of m-th roots of unity.
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Assumption 5.1. S = Gm i.e., the maximal central torus of G is one-dimensional.

This is the first nontrivial case since if S is finite then ZG,�,�1,�2 (s) is con-
stant. Note that this assumption followed from Igusa’s assumption that G is an
irreducible subgroup of GLn (not contained in SLn). However we shall want to
consider non-irreducible representations � : G ! GLn.

Under this assumption, Hom (G, Gm) is generated by a single element f sat-
isfying f (� ) = � �m for every � 2 S and ker f = G0 where � 2 f�1, 1g. Later we
shall choose a generator, i.e. choose �, to make our calculation smoother. We can
write the characters �i = f ri for some ri 2 Z and hence we have

LEMMA 5.1.

ZG,�,�1,�2 (s) = ZG,�,f (r1s + r2)

where ZG,�,f (s) =
R

G+ jf (g)js�G(g).
So under Assumption 5.1 we can focus our attention on ZG,�,f (s).
The key to calculating ZG,�,f (s) is the p-adic Bruhat decomposition and the

expression for the measure of double cosets in this decomposition as the distance
between chambers in the associated building. To apply this decomposition we
need at present to make the following assumption:

Assumption 5.2. The maximal torus T splits over k.

In this situation we call G k-split. (Note that, following the work of Bruhat
and Tits, the notion of a p-adic Bruhat decomposition exists for a non-split group
G which should allow us, we hope, to carry out the following calculation in this
setting eventually.) T is unique up to conjugation in G(k) and hence contains S.
Since T splits over k it is k-isomorphic to (Gm)dim (T). Let � : T ! (Gm)dim T

denote such an isomorphism.
When G is k-split, the nontrivial minimal closed unipotent subgroups of G

normalized by T are isomorphic to Ga. The conjugation action of T is mapped
by this isomorphism to an action of T on Ga of the form

x 7! �(t)x

where � 2 Hom (T , Gm). The elements � 2 Hom (T , Gm) thus obtained are all
distinct nonzero and finite in number. They form a reduced root system Φ in the
subspace of V = Hom (T , Gm) 
Z R that they generate. The elements of Φ are
called the roots of G relative to T. For each � 2 Φ, let U� be the corresponding
minimal unipotent subgroup and �� : Ga ! U� denote a k-isomorphism such
that

t��(u)t�1 = ��
�
�(t)u

�
.



74 MARCUS P. F. DU SAUTOY AND ALEXANDER LUBOTZKY

Let � denote a fixed uniformizing parameter for #k. We then make the following:

Assumption 5.3. The groups G and T together with the isomorphisms � :
T ! (Gm)dim (T) and �� : Ga ! U� for each � 2 Φ have good reduction mod �.
In this setting we shall say (after Igusa) that G has very good reduction mod �.

We refer to [B] and [PR] x 3.3 for an explanation of what it means for a
group and a homomorphism of groups to have good reduction. This assumption,
which is perhaps the most technical of our assumptions, is satisfied for almost
all primes p if we consider an algebraic group G defined over a global number
field K and take its Kp-points G(Kp) (see Proposition 3.20 [PR]).

The finite Weyl group W of G relative to T is defined as W = N(k)=T(k)
where N denotes the normalizer of T in G. The Weyl group W is isomorphic to
the Weyl group of the root system Φ. One consequence of Assumption 5.3 is
that we can choose coset representatives gw for every w in W from N(#k). An
explanation of this can be found in [I] II.2.

Let Ξ denote Hom (Gm, T) and V� = Ξ
Z R. Then Ξ is dual to Hom (T , Gm)
under the natural pairing

Hom (T , Gm)� Hom (Gm, T) ! Z

(�, �) 7! h�, �i

where �
�
�(� )

�
= � h�,�i for every � in Gm. The Weyl group W can then be

embedded in GL (V�) since it acts on the coroots Φ� of Φ which can be identified
with elements of V� under this pairing. We now extend W to a group W of affine
linear transformations of V� as follows: For each � 2 Ξ define t�(x) = x + � for
each x 2 V� and set

W = W.ft�j� 2 Ξg,

the semi-direct product of W and translations by Ξ. The law of multiplication in
W is defined by

(w1t�1)(w2t�2) = w1w2t� where � = w�1
2 (�1) + �2.

W is called the affine Weyl group of G relative to T . It is isomorphic to the
group N(k)=T(#k) via the map wt� 7! gw�(�)T(#k). (Note that the coroots Φ�

span V� if and only if G is semisimple; hence W is in general larger than the
affine Weyl group of the root system Φ. Under Assumption 5.1 the quotient of
W by the affine Weyl group of Φ is isomorphic to Z.)

Choose a basis Φ0 = f�1, : : : ,�lg for Φ so that Φ+ and Φ�, the set of positive
and negative roots, are defined. Recall that the finite Weyl group W acts simply
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transitively on the set of all bases for Φ. The functional equation that follows
from Igusa’s explicit form for ZG,�,f (s) depends on the freedom here to choose
a different basis for Φ. This choice of basis fixes a fundamental cell C in V�

defined by

C = fx 2 V�j0 < h�, xi < 1 for all � 2 Φ+g.

Define U+ =
Q

�2Φ+ ��(Ga) and U� similarly. Then, setting

B = U+(�#k)T(#k)U�(#k),

B is an Iwahori subgroup and we have the following p-adic Bruhat decomposition
of G(k):

PROPOSITION 5.2. (i) G(k) can be written as a disjoint union of double cosets of
B as follows:

G(k) =
[

wt�2W

Bgw�(�)B;

and G(#k) =
[

w2W

BgwB.

(ii) Define the function �(wt�) by

q�(wt�) = card
�
Bgw�(�)B=B

�
= �G

�
Bgw�(�)B

�
=�G(B),

the index of B in the double coset Bgw�(�)B. Then for each � 2 Ξ there is a unique
element w� 2 W such that the function w 7! �(wt�) on W attains its minimum at
w� with value

�(w�t�) =
X

�2w�1
�

(Φ+)

h�, �i � �(w�).(5.1)

The element w� has the property that for all w 2 W

�(ww�t�) = �(w) + �(w�t�).(5.2)

The formulas (5.1) and (5.2) for �(wt�), established by Iwahori and Mat-
sumoto [IwM], can be understood from the interpretation of �(wt�) as the number
of hyperplanes in V� separating the fundamental cell C from its image �(C) under
the action of � = wt� 2 W . For more details we refer the reader to [IwM] and



76 MARCUS P. F. DU SAUTOY AND ALEXANDER LUBOTZKY

[I]. The expression for �(wt�) and the decomposition of G(k) are crucial to the
calculation of ZG,�,f (s).

Since B � G(#k) and gw 2 N(#k), then Bgw�(�)B � G+ if and only if
�(�(�)) 2 Mn(#k). Set

Ξ+ = f� 2 Ξ j �(�(�)) 2 Mn(#k)g

and for each w 2 W

Ξw = f� 2 Ξ j w� = wg.

Then we can make the first inroads on the calculation of ZG,�,f (s). Note that since
BgwB � G(#k), the integrand jf (g)js is constant on Bgw�(�)B and takes the value
jf
�
�(�)

�
js. So

ZG,�,f (s) = �(B) �
X
w2W

X
�2Ξ+

q�(wt�)jf
�
�(�)

�
js

= �(B) �
X

w02W

X
w2W

X
�2Ξ+

w

q�(w0wt�)jf
�
�(�)

�
js

=
�
�(B) �

X
w02W

q�(w0)��X
w2W

X
�2Ξ+

w

q�(wt�)jf
�
�(�)

�
js
�

where Ξ+
w = Ξw\Ξ+. But �(B)�

P
w2W q�(w) = �G

�
G(#k)

�
= 1 by our normalization

of the Haar measure �G. Hence

ZG,�,f (s) =
X
w2W

X
�2Ξ+

w

q�(wt�)jf
�
�(�)

�
js.

By Proposition 5.2 (ii), for � 2 Ξw

�(wt�) =
X

�2w�1(Φ+)

h�, �i � �(w)

=
X
�2Φ+

h�, w�i � �(w)

since h, i is invariant under the action of W. We set

Y
�2Φ+

� =
lY

i=1

�
ai
i(5.3)

where a1, : : : , al are positive integers depending only on Φ. Then, since j f
�
w(�)(�)

�
j =
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j f
�
gw�(�)g�1

w

�
j = jf

�
�(�)

�
j, we have

ZG,�,f (s) =
X
w2W

X
�2Ξ+

w

q(
P

�2Φ+ h�,w�i��(w))
j f
�
w(�)(�)

�
js(5.4)

=
X
w2W

q��(w)
X

�2wΞ+
w

qa1h�1,�i+���+alh�l,�ijf
�
�(�)

�
js.

We turn now to an analysis of the representation � in order to understand the
set wΞ+

w. Since G is a reductive group, the representation � is completely reducible
i.e., it is equivalent over GLn (k) to a direct sum of irreducible representations.
Our Assumption 5.2 implies that we can choose an equivalent representation of
� such that the maximal k-split torus T consists of all diagonal matrices in G.
We shall in fact suppose that � is such an equivalent representation:

Assumption 5.4. There exist k-rational irreducible representations �i : G !

GLni (i = 1, : : : , r) such that �(g) is the diagonal block matrix with �1(g), : : : , �r(g)
on the diagonal for each g 2 G(k)

�(g) =

0
B@
�1(g) 0

. . .
0 �r(g)

1
CA ,

and the maximal k-split torus �(T(k)) consists of all diagonal matrices in �(G(k)).

Note that if we begin with a representation � over K a finite extension of Q
then there exists an equivalent representation �0 over GLn (K) such that �0 satisfies
Assumption 5.4. But by Lemma 4.2, for almost all primes p of K, ZG,�0,p(s) =
ZG,�,p(s). Hence Assumption 5.4 can be dropped in the global setting by excluding
finitely many primes.

We are interested in knowing when �(t) = �(�(�)) 2 �(T(k))\Mn(#k). Under
our Assumption 5.4, �(T(k)) is diagonal. The diagonal entries of t 2 T(k) are
given by the weights !ij 2 Hom (T , Gm) ( j = 1, : : : , ni) of the representations
�i. If we denote by !i 2 Hom (T , Gm) the dominant weight of the irreducible
representation g 7! t�i(g)�1, the contragredient representation of �i, then there
exist l-tuples c( j, i) =

�
c1( j, i), : : : , cl( j, i)

�
2 Nl ( j = 1, : : : , ni) such that

!ij(t) = !�1
i (t) �

lY
k=1

�
ck( j,i)
k (t).

For each i there exists a unique j such that c( j, i) = (0, : : : , 0). (For a reference
see [S] VII and VIII.) For each i = 1, : : : , r there exists mi 2 Z such that
!i(� )m = f (� )�mi for every � 2 S. We shall make a final assumption (Assumption
5.5) that will in fact imply that mi > 0 for all i = 1, : : : , r. Since the representation
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� is faithful, the greatest common divisor of m1, : : : , mr, which we denote by
(m1, : : : , mr), is equal to 1. Choose �1, : : : ,�r 2 Z such that �1m1 +� � �+�rmr = 1.

Recall that f�1, : : : ,�lg was our choice of basis for the root system Φ. We
set �0 = f jT where f is the generator we have chosen for Hom (G, Gm). Then
�0,�1, : : : ,�l form a set of free generators for Hom (Q, Gm) where Q = T=S\G0

and S\G0 �= �m, the group of mth roots of unity. This follows from the fact that

l\
i=0

ker�i = ker�0 \
l\

i=1

ker�i = G0 \ S.

Let �0, �1, : : : , �l denote the elements of Hom (Gm, Q) satisfying h�i, �ji = �ij for
0 � i, j � l then f�0, �1, : : : , �lg is a set of free generators of Hom (Gm, Q).

For each i = 1, : : : , r, !m
i 2 Hom (Q, Gm) and hence can be written uniquely

as a Z-linear combination of the basis �0, : : : ,�l. For � 2 S, !m
i (� ) = �

�mi
0 (� )

and �j(� ) = 1 for 1 � j � l. Hence

!m
i = ��mi

0 �
lY

j=1

�
bj(i)
j(5.5)

for some b1(i), : : : , bl(i) 2 Z. In fact bj(i) � 0 for 1 � j � l and 1 � i � r
since !i is a dominant weight. As Igusa points out, this can be deduced from
the fact that all entries of the Cartan matrix of a complex simple Lie algebra are
positive. Note however that in our setting bj(i) can be zero. This corresponds to
those nonfaithful representations �i. For such a representation f�jjbj(i) = 0g is a
basis for a root system of the kernel of �i.

LEMMA 5.3. Ξ = Hom (Gm, T) = �mZ
0 �

Ql
j=1 (�

�1bj(1)+���+�rbj(r)
0 �j)Z.

Proof. By duality Ξ is a subgroup of Hom (Gm, Q) with Z=mZ as the factor
group. Each element � of Hom (Gm, Q) can be expressed uniquely as � =

Ql
j=0 �

ej
j

for some e0, e1, : : : , el 2 Z. Then � is in Ξ if and only if h�, �i 2 Z for all
� 2 Hom (T , Gm). Set ! = !�1

1 : : : !�r
r , where �1, : : : ,�r were chosen above.

Then S \ ker! =
Tl

i=1 ker�i \ ker! = 1. Hence Hom (T , Gm) is generated by
�1, : : : ,�l and !. Since h�i, �i 2 Z for i = 1, : : : , r, � is in Ξ if and only if
h!, �i 2 Z. This is the case if and only if

�(�1m1 + � � � + �rmr)e0 +
lX

j=1

�
�1bj(1) + � � � + �rbj(r)

�
ej � 0 mod m.

Since �1m1 + � � � + �rmr = 1 the lemma follows.
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We define c1, : : : , cl 2 Z by

cj = �1bj(1) + � � � + �rbj(r).

Let C denote the positive Weyl chamber relative to the choice of basis Φ0

defined by

C = fx 2 V�j0 < h�, xi for all � 2 Φ+g

and C its closure in V�. Igusa established previously (see [I] II.3) that the set
wΞ+

w has the following description:

wΞ+
w = f� 2 Ξ+ \ Cjh�i, �i > 0 if �i 2 w(Φ�)g(5.6)

The final piece in the jigsaw is to analyze the set Ξ+ \C. By definition of C
we have

Ξ \ C = �mZ
0 �

lY
j=1

(�
cj
0 �j)

N.

LEMMA 5.4. Let � 2 Ξ \ C. Then � 2 Ξ+ \ C if and only if h!�1
i , �i � 0 for

i = 1, : : : , r.

Proof. The element � = �me0
0 �

Ql
j=1 (�

cj
0 �j)ej of Ξ is contained in Ξ+ if and only

if !ik
�
�(�)

�
2 #k, i.e. h!ik, �i � 0, for each i = 1, : : : , r and k = 1, : : : , ni. Since,

for each i = 1, : : : , r, !�1
i = !ik for some k, one direction of the lemma is clear.

Suppose then that h!�1
i , �i � 0 for i = 1, : : : , r. Then, for each i = 1, : : : , r and

k = 1, : : : , ni,

h!ik, �i =
lX

j=1

cj(k, i)ej + h!�1
i , �i � 0

since c(k, i) 2 Nl and ej � 0 for 1 � j � l. This completes the proof of the
lemma.

This lemma shows why it is the dominant weight of the contragredient rep-
resentation which dictates whether � 2 Ξ+ \ C.

To complete the description of Ξ+ \ C in a similar fashion to Igusa’s cal-
culation we need to make one final assumption concerning the irreducible rep-
resentations �i. To state this assumption we extend from semisimple groups to
reductive groups the definition of what it means for a weight !1 to dominate a
weight !2.



80 MARCUS P. F. DU SAUTOY AND ALEXANDER LUBOTZKY

Definition 5.5. Let !1 and !2 be weights of our reductive algebraic group
G. With respect to some choice of generator f for Hom (G, Gm) and denoting
�0 = f jT we can write

!m
i = ��mi

0 �
lY

j=1

�
bj(i)
j .

We say that !1 dominates !2 if either

(1) m1m2 > 0 and bj(1)=m1 � bj(2)=m2 for each j = 1, : : : , l; or

(2) m1 = m2 = 0 and bj(1) � bj(2) for each j = 1, : : : , l. If the !i are
dominant weights of representations �i, we say that �1 dominates �2.

Note that if m1 = m2 = 0 then !i is in fact a weight of the semisimple group
G0 and our definition is the same as the definiton for semisimple groups.

We then make the following:

Assumption 5.5. There exists i0 2 f1, : : : , rg such that t��1
i0 dominates t��1

i
for each i = 1, : : : , r. Without loss of generality we may suppose that i0 = 1.

Note that since mi 6= 0 for some i, this assumption implies that mi 6= 0 for all
i and without loss of generality we can choose a generator f for Hom (G, Gm)
such that mi > 0 for all i.

In fact Assumption 5.5 has the following equivalent reformulation:

LEMMA 5.6. t��1
1 dominates t��1

i for each i = 1, : : : , r if and only if, for all
� 2 Ξ \ C, if h!�1

1 , �i � 0 then h!�1
i , �i � 0 for all i = 1, : : : , r.

Proof. Suppose that t��1
1 dominates t��1

i for each i = 1, : : : , r. Let

� = �me0
0 �

lY
j=1

(�
cj
0 �j)

ej 2 Ξ \ C

and suppose that

h!�1
1 , �i = 1=m

0
@m1

0
@me0 +

lX
j=1

cjej

1
A�

lX
j=1

bj(1)ej

1
A � 0.

Then (me0+
Pl

j=1 cjej) �
Pl

j=1 (bj(1)=m1)ej since m1 > 0. But bj(1)=m1 � bj(i)=mi

for all i = 1, : : : , r and mi > 0 hence

h!�1
i , �i = 1=m

0
@mi

0
@me0 +

lX
j=1

cjej

1
A�

lX
j=1

bj(i)ej

1
A � 0

for all i = 1, : : : , r.
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Suppose conversely that for all � 2 Ξ \ C if h!�1
1 , �i � 0 then h!�1

i , �i � 0
for all i = 1, : : : , r. Let � = ��mim

0 . If

h!�1
1 , �i = 1=m(m1(� mim)) = �m1mi � 0

then

h!�1
i , �i = 1=m(mi(� mim)) = �m2

i � 0.

If m1 = 0 then mi = 0 for all i = 1, : : : , r but this is not the case. If m1 > 0
then mi � 0. In fact mi > 0 since otherwise bj0 (i) 6= 0 for some j0 and then
setting ej0 = m, e0 � bj0 (1)=m1 � cj0ej0 and ej = 0 otherwise, we would have
h!�1

1 , �i � 0 but h!�1
i , �i < 0. A similar argument works for m1 < 0. Finally for

each j = 1, : : : , l, choose ej = m1m and e0 = bj(1)� cj and ei = 0 otherwise. Then

h!�1
1 , �i = 1=m

�
m1(m(bj(1)� cj) + cjm1m)� bj(1)m1m

�
= 0.

Hence our assumption implies that

h!�1
i , �i = 1=m

�
mi(m(bj(1)� cj) + cjm1m)� bj(i)m1m

�
= 1=m(mimbj(1)� bj(i)m1m) � 0.

Since m1mi > 0, we have that bj(1)=m1 � bj(i)=mi for all i = 1, : : : , r i.e., that
t��1

1 dominates t��1
i for each i = 1, : : : , r. This completes the proof.

The following corollary of this result describes a natural setting in which
Assumption 5.5 is true. Note that the hypothesis of the lemma is true for the
example of section 3.1 (see the proof of Lemma 3.2 (3)).

LEMMA 5.7. Suppose that �1 has the property: (�) for all g 2 G, �1(g) 2
Mn1(#k) implies that �i(g) 2 Mni(#k) for each i = 1, : : : , r. Then �1 dominates �i

for each i = 1, : : : , r.

Proof. Let � 2 Ξ \ C then �(�) 2 T . Suppose that h!�1
1 , �i � 0. Then by

the proof of Lemma 5.4, h!1j, �i � 0, for each j = 1, : : : , n1. But this means that
!1j(�(�)) 2 #k for each j = 1, : : : , ni, i.e. that �1(�(�)) 2 Mn1 (#k). Hence property
(�) implies that �i(�(�)) 2 Mni(#k), i.e. that h!ij, �i � 0, for each j = 1, : : : , ni.
In particular h!�1

i , �i � 0. By Lemma 5.6 this implies that t��1
1 dominates t��1

i
for each i = 1, : : : , r.
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Under Assumption 5.5 we can then prove

LEMMA 5.8.

Ξ+\C = f�me0
0 �

lY
j=1

(�
cj
0 �j)

ej jej � 0 for 1 � j � l and me0 �
lX

j=1

(bj(1)=m1�cj)ejg.

Proof. An element � = �me0
0 �

Ql
j=1 (�

cj
0 �j)ej of Ξ is contained in Ξ+ if and

only if !ik
�
�(�)

�
2 #k, i.e. h!ik, �i � 0, for each i = 1, : : : , r and k = 1, : : : , ni.

But by Lemma 5.4 and 5.6, under Assumption 5.5 this is the case if and only if
h!�1

1 , �i � 0, i.e. me0 �
Pl

j=1 (bj(1)=m1 � cj)ej.

We can finally complete our explicit finite form for ZG,�,f (s). Since jf
�
�(�)

�
j =

q�h�0,�i for � 2 Ξ, we have by (5.4), (5.6) and Lemma 5.8

ZG,�,f (s) =
X
w2W

q��(w)
X

(e0,:::,el)2I

q�me0s+(a1�c1s)e1+���+(al�cls)el

where

I =

(
(e0, : : : , el) 2 Z j me0 �

Pl
j=1 (bj(1)=m1 � cj)ej, ej � 1 if �j 2 w(Φ�)

and ej � 0 otherwise for j = 1, : : : , l

)
.

Note that, since h!�1
1 , �i 2 Z, 1=m

Pl
j=1 (bj(1)=m1 � cj)ej 2 Z. Hence

ZG,�,f (s) =
(
P

w2W q��(w)Q
�j2w(Φ�) qaj�(bj(1)=m1)s)

(1� q�ms)
Ql

j=1 (1� qaj�(bj(1)=m1)s)

provided that Re(s) > maxf0, ajm1=bj(1)( j = 1, : : : , l)g.
Igusa showed that by choosing a different basis for the root system Φ we

can realize a functional equation that ZG,�,f (s) satisfies. We prefer to explain this
functional equation via a change of variable in this expression. We can write for
any w0 2 W

ZG,�,f (s) =
(
P

w02W q��(w0w0)Q
�j2w0w0(Φ�) qaj�(bj(1)=m1)s)

(1� q�ms)
Ql

j=1 (1� qaj�(bj(1)=m1)s)
.

We now choose w0 to be the unique element of W permuting Φ+ and Φ�.
Then using the fact that �(w0w0) + �(w0) = card (Φ+) and denoting the above two
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expressions for the same ZG,�,f (s) by Z+ and Z� we get

Z+jq!q�1 = (� 1)l+1q�ms+card (Φ+)Z�.

This is our form of the functional equation established by Igusa.
We draw together the results of this section and section 2 in the following:

THEOREM 5.9. Let G be a linear algebraic group defined over k, a finite extension
of Qp and � : G ! GLn be a faithful k-rational representation. Let H denote the
connected component of the reductive part of G. Suppose that G and � satisfy
Assumptions 2.1, 2.2 and 2.3 and H and �jH satisfy Assumptions 5.1 to 5.5 and that
the functions �i : H ! R defined in x2 are characters on H. Then

(1)

ZG,�(s) =
(
P

w2W q��(w)Q
�j2w(Φ�) qaj�(bj(1)=m1)(r1s+r2))

(1� q�m(r1s+r2))
Ql

j=1 (1� qaj�(bj(1)=m1)(r1s+r2))

provided that Re(s) > maxf�r2=r1, 1=r1
�
ajm1=bj(1)� r2

�
g.

(2) ZG,�(s) satisfies a functional equation:

ZG,�(s)jq!q�1 = (� 1)l+1q�m(r1s+r2)+card(Φ+)ZG,�(s).

We recall briefly the interpretation of the numerical data m, r1 and r2, a1, : : : , al,
b1(1), : : : , bl(1) and m1:

m. Let S denote the one-dimensional maximal central torus of H and H0

the derived group of H, then H0 \ S = �m, the group of mth roots of unity.

r1 and r2. Let f denote the generator of Hom (G, Gm) and �i(i = 1, : : : , c�1)
be the functions on H detailed in section 2 (assumed to be characters), then
f r1(h) = j det �(h)j and f r2(h) =

Qc�1
i=1 j�i(h)j�1.

a1, : : : , al. Let f�1, : : : ,�lg denote a basis for the root system Φ of H
relative to a maximal k-split torus T , then

Q
�2Φ+ � = �a1

1 : : : �
al
l .

b1(1), : : : , bl(1) and m1. �jH decomposes as a direct sum of irreducible rep-
resentations �1, : : : , �r where �1 dominates �2, : : : , �r. Let !1 denote the dominant

weight of t��1 then !m
1 = ��m1

0 �
Ql

j=1 �
bj(1)
j where �0 = f jT .

6. Functional equations and uniformity for local zeta functions of alge-
braic groups. We return in this section to the perspective introduced in x4. Let
G be a linear algebraic group defined over a number field K and fix a faithful
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K-rational representation

� : G ! GLn .

As a corollary to the previous section, under certain conditions we shall deduce
for almost all primes p of K an explicit finite form and a functional equation
for the zeta functions ZG,�,p(s). A corollary of this explicit finite form will be a
certain uniformity in ZG,�,p(s) as p ranges over all primes of K.

In particular, when G = Aut Γ and K = Q for some torsion-free, finitely
generated nilpotent group Γ we can deduce corresponding results for the local
zeta functions defined in the Introduction for the nilpotent group Γ.

THEOREM 6.1. Let G be a linear algebraic group defined over K a finite extension
of Q and � : G ! GLn be a faithful K-rational representation. Let H be the
connected component of the reductive part of G. Suppose that (i) the functions �i :
H ! R (defined in x2) are characters of H; (ii) H is K-split; (iii) the maximal central
torus S of H is one-dimensional; and (iv) there exists an irreducible component �1

of � which dominates the remaining irreducible components. Then for almost all
primes p of K:

(1)

ZG,�,p(s) =
(
P

w2W q��(w)Q
�j2w(Φ�) qaj�(bj(1)=m1)(r1s+r2))

(1� q�m(r1s+r2))
Ql

j=1 (1� qaj�(bj(1)=m1)(r1s+r2))

provided that Re(s) > maxf�r2=r1, 1=r1
�
ajm1=bj(1) � r2

�
g where the numeri-

cal data m, r1, and r2, a1, : : : , al, b1(1), : : : , bl(1) and m1, have the interpretation
detailed at the end of x5 and q is the order of the residue field of Kp; and

(2) ZG,�,p(s) satisfies a functional equation:

ZG,�,p(s)jq!q�1 = (� 1)l+1q�m(r1s+r2)+card (Φ+)ZG,�,p(s).

Proof. By Corollary 4.6 for almost all primes p of K we can express ZG,�,p(s)
as an integral (4.1) with respect to the reductive group H. We are required to
show that, for almost all primes, H and � satisfy Assumptions 5.3 and 5.4.

By Lemma 4.2 for any equivalent representation �0 of �, ZG,�0,p(s) = ZG,�,p(s)
for almost all primes p. Since H is a reductive group, the representation � is
completely reducible, i.e., equivalent over GLn (K) to a direct sum of irreducible
representations �i called the irreducible components of �. (The irreducible com-
ponents are uniquely determined up to equivalence. Note that the concept of a
representation �1 dominating a representation �2 is invariant under taking equiva-
lent representations so Assumption (iv) of our Theorem is well-defined.) Since T
splits over K, �i

�
T(K)

�
is diagonalizable over GLn (K) so we can choose �i with

�i
�
T(K)

�
diagonal. Hence by taking an equivalent representation we can arrange

that, for almost all primes p, Assumption 5.4 is true.
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If �p denotes a fixed uniformizing parameter for #Kp then, for almost all
primes p, H(Kp) has very good reduction mod �p (see for example Proposi-
tion 3.20 [PR]).

Since we are taking Assumptions 5.1, 5.2 and 5.5 as hypotheses for our
Theorem we can apply Theorem 5.9 to yield statements (1) and (2) above for
almost all primes p.

Note that the numerical data are independent of the prime p. (A trap for the
unwary: m is not the order of the group H0(Kp)\S(Kp), which depends on p, but
the order of the group H0(Kp)\ S(Kp), (where Kp = C is the algebraic closure of
Kp) which does not depend on p). We thus have the following uniformity result:

COROLLARY 6.2. Suppose that G and � satisfy the hypothesis of Theorem 6.1.
Then there exists a rational function W(X, Y) 2 Q(X, Y) such that for almost all
primes p of K

ZG,�,p(s) = W(q, q�s),

i.e. ZG,� is universal in p.

It would be desirable to remove the hypothesis made on the reductive group
in Theorem 6.1—in particular, that H be K-split. We can however already extend
Theorem 6.1 to a class of non-split groups—namely to groups which are the
restriction of scalars of a split group over a larger field.

Restriction of scalars for abstract algebraic varieties was defined by Weil
[W] and the definition reproduced in the languages of schemes in [BS] x2.8. We
follow the construction in [Se] and [PR] x2.1.2 for the special case of an algebraic
matrix group since we also want to keep track of restricting the representation
� : G ! GLn. Identify G via � with its image as an algebraic subgroup of GLn.
Let L be a finite extension of K of degree d where djn. The construction depends
on a choice of K-basis E for L. We choose E to be an integral basis. In this
way we will ensure that integral matrices restrict to integral matrices. For any
extension field E of K we take R = L 
K E to be the E-algebra on the basis E
with the same structure constants as the K-algebra L. R acts by multiplication on
itself as an E-algebra and hence we can identify R with an E-subalgebra CE of
Md(E), the E-linear transformations of R.

Let G be a L-algebraic subgroup of GLm where m = n=d. For any extension
field L1 of K, G(L1) is the set of all matrices x in GLm (L1) which satisfy certain
polynomial equations Pl(x11, x12, : : : , xmm) = 0 (l 2 Λ).

For any extension field E of K, define RL=KG(E) to be the set of matrices
in Mn(E) which can be written as m � m matrices whose entries are themselves
matrices belonging to CE � Md(E) and which, considered as m � m matrices,
satisfy the equations defining G. Since CE is defined by polynomials over K, and
the equations Pl = 0 force G to be a subgroup of GLm, RL=KG is a K-algebraic
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subgroup of GLn called the restriction of scalars of G from L to K. The group
RL=KG(E) may be identified with the group G(R) where R = L
K E.

Let #E be the ring of integers of an extension field E.

LEMMA 6.3. RL=KG(E)\Mn(#E) = G(R)\Mm(#L
#K #E) where R = L
K E.

Proof. It suffices to prove that

CE \Md(#E) = #L 
#K #E.

Let E = fe1, : : : , edg be the integral basis for L over K. Then #L 
#K #E =
#E�e1�� � ��#E�ed. Since ei�ej 2 #L, multiplication by an element x 2 #L
#K#E is
represented with respect to the basis E by a matrix in Md(#E). Hence #L
#K #E �

CE\Md(#E). Conversely a matrix u 2 CE represents multiplication by the element
1.u. There exist a1, : : : , ad 2 #K with the property that 1 = a1e1 + � � � + aded. If
u = (uij) 2 Md(#E) then 1.u = (

Pd
j=1 aju1j)e1 + � � � + (

Pd
j=1 ajudj)ed 2 #L 
#K #E.

Thus CE \Md(#E) � #L 
#K #E. This completes the proof of Lemma 6.3.

LEMMA 6.4. Suppose that the reductive K-algebraic group G is the restriction
of scalars of a reductive L-algebraic group G. If � 2 HomK (G, Gm) is a character
of G defined over K then, identifying G(K) with G(L), � is a character of G(L)
defined over L.

Proof. Recall that a reductive group is the almost direct product of its maximal
central torus and its derived group. Hence � is a character of G(L) defined over
L if and only if �jS is a character of S (where S is the maximal central L-torus
of G) defined over L and �jG0 = id (where G0 defines the derived group of G).
Let S0 = RL=KS. Then S0 is the maximal central K-torus of G. This follows from
the fact RL=K induces a one-to-one correspondence between L-subgroups in G

and K-subgroups in G and preserves the properties of being a torus or being
central (see [BT] x6.18-19). A proof of our lemma for G a torus is contained
in [O] x1.4. Since �jS0 is a character of S0 defined over K, [O] implies that
�jS defines a character of S over L. If V(G) is any verbal subgroup of G then
V(G) = RL=KV(G). Thus G0 = RL=KG

0 and hence �jG0 = id. This proves our
lemma. (We also refer to x2.1.2 of [PR] where the statement of this lemma is
mentioned.)

Having set up the language for restriction of scalars we may now state the
following:

PROPOSITION 6.5. Let G be a linear algebraic group defined over a number field
K and � : G ! GLn be a faithful K-rational representation. Choose two characters
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�1,�2 2 HomK (G, Gm) of G. Define, for each prime p of K,

ZG,�,�1,�2,p(s) =
Z

G+
p

j�1(g)jsj�2(g)j�G(g)

where G+
p = ��1���G(Kp)

�
\ Mn(#Kp)

�
. Suppose that the matrix group �(G) can

be identified with the restriction of scalars of an algebraic matrix group G � GLn0

from an extension field L to K (where [L : K] = d and n = n0d). Let � : G ! GLn0

denote the associated representation of G and suppose that p1, : : : , pr denote the
primes in L dividing p. Then

ZG,�,�1�2,p(s) =
rY

i=1

ZG,�,�1�2,pi(s).

Proof. By Lemma 6.3, �(G+
p) = �(G(L 
K Kp)) \ Mn0(#L 
#K #Kp). Since

L 
K Kp =
Qr

i=1 Lpi and #L 
#K #Kp =
Qr

i=1 #Lpi
, it follows that G+

p =
Qr

i=1 G
+
pi

.
Lemma 6.4 ensures that the characters �1 and �2 define characters of G over L.
Hence

ZG,�,�1,�2,p(s) =
rY

i=1

ZG,�,�1,�2,pi(s).

COROLLARY 6.6. Let G be a linear algebraic group defined over K a finite
extension of Q and � : G ! GLn be a faithful K-rational representation. Let H
be the connected component of the reductive part of G. Suppose that �(H) can be
identified with the restriction of scalars of an algebraic matrix group H � GLn0

from an extension field L to K (where [L : K] = d and n = n0d) and that (i)
the functions �i : H ! R (defined in x2) are characters; (ii) H is is L-split; (iii)
the maximal central L-torus S of H is one-dimensional; and (iv) there exists an
irreducible component � of the natural representation � of H which dominates the
remaining irreducible components. Then for almost all primes p of K:

(1)

ZG,�,p(s) =
Y
pijp

�P
w2W q�fi�(w)Q

�j2w(Φ�) qfi(aj�(bj(1)=m1)(r1s+r2))�
(1� q�fim(r1s+r2))

Ql
j=i

�
1 � qfi(aj�(bj(1)=m1)(r1s+r2))�(6.1)

provided that Re(s) > max
n
�r2=r1, 1=r1

�
ajm1=bj(1) � r2

�o
where the productQ

pijp
is taken over all primes pi in L dividing p, fi denotes the residue class degree

of pi over p and the numerical data m, r1, and r2, a1, : : : , al, b1(1), : : : , bl(1) and
m1 is associated with the reductive L-algebraic group H; and
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(2) ZG,�,p(s) satisfies a functional equation

ZG,�,p(s)jq!q�1 =
Y
pijp

(� 1)l+1qfi
�

card Φ+�m(r1s+r2)
�
ZG,�,p(s).

Proof. This follows directly from Theorem 6.1 and Proposition 6.5.

Note that this corollary encompasses groups whose reductive part is not K-
split. From a comment made in the proof of Lemma 6.4, and using the fact that
(L-dimension of an L-torus T)=(K-dimension of RL=KT), the maximal central
L-torus of H is one-dimensional if and only if the maximal central K-torus of H
is one-dimensional.

As in Corollary 6.2, we can deduce a uniformity result in the situation detailed
in Corollary 6.6, in which the form of the local zeta function depends on how
the prime p behaves in the extension L.

COROLLARY 6.7. Suppose that G and � satisfy the hypothesis of Corollary 6.6.
Then for each finite family f = ( f1, : : : , fr) of positive integers there is a rational
function Wf(Y , X) such that for almost all primes p of K

ZG,�,p = Wf(q, q�s)

whenever p decomposes in L into r primes of residue class degrees f1, : : : , fr re-
spectively.

The Cebotarev Density Theorem then gives us:

COROLLARY 6.8. Suppose that G and � satisfy the hypothesis of Corollary 6.6.
Then ZG,�(s) is almost universal in p.

Finally we draw all this together to conclude the following theorem about
the zeta function �^Γ (s) associated to a finitely generated torsion-free nilpotent
group Γ:

THEOREM 6.9. Let Γ be a finitely generated torsion-free nilpotent group or a
ring additively isomorphic to Zd. Suppose that the algebraic automorphism group
associated to Γ satisfies the hypothesis of Corollary 6.6. Then:

(1) for almost all primes p, �^Γ,p(s) is a rational function of the form (6.1);

(2) �^Γ (s) is almost universal in p;

(3) for almost all primes p, �^Γ,p(s) satisfies a functional equation of the form

�^Γ,p(s)jp!p�1 = (� 1)nipais+bi�^Γ,p(s),



LOCAL ZETA FUNCTIONS OF NILPOTENT GROUPS 89

where ni = (l + 1)r, ai = �mr1f , bi = ( � mr2 + card Φ+)f where p = p1 � � � pr in L
and f = f1 + � � � + fr where fi is the residue class degree of pi.
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[BS] A. Borel and J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv.
39 (1964), 111–164.
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Amer. Math. Soc. 23 (1990), 121–126.
[duS2] , Finitely generated groups, p-adic analytic groups and Poincaré series, Ann. of Math.
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