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FUNCTIONAL EQUATIONS AND UNIFORMITY
FOR LOCAL ZETA FUNCTIONS OF NILPOTENT GROUPS

By MARrcus P. F. bu Sautoy and ALEXANDER LUBOTZKY

Abstract. We investigate in this paper the zeta function (Qp(s) associated to a nilpotent group I
introduced in [GSS)]. This zeta function counts the subgroups H < ™ whose profinite completion F
is isomorphic to the profinite completion f By representing (Qp(s) as an integral with respect to
the Haar measure on the algebraic automorphism group G of the Lie algebra associated to ' and
by generaizing some recent work of Igusa [I], we give, under some assumptions on I', an explicit
finite form for (Qp(s) in terms of the combinatorial data of the root system of G and information
about the weights of various representations of G. As a corollary of this finite form we are able
to prove (1) a certain uniformity in p confirming a question raised in [GSS]; and (2) a functional
equation that the local factors satisfy le\’p(s)‘p_}p—l =(- 1)”pas+b(|§p(s). This functional equation
is perhaps the most important result of the paper asit is a new feature of the theory of zeta functions
of groups.

0. Introduction. Let T be afinitely generated, torsion-free nilpotent group
and define for a family of subgroups X'* of ' the associated Dirichlet series

G = > [F:H[™=) ayrn~®
Hex* n=1
where

ap(M) =card{H € X* | |l : H| = n}.

Such functions were first introduced in the paper [GSS] where the following
classes of subgroups were considered:

X< = {al subgroups of finite index in '}

XY={HeX=|Hnorma inT}
X¥ ={HeXxSH¥~T}
XM= {HeXSH=T}

where " denotes the profinite completion of . In that paper [GSS] it was estab-
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lished that for x € {<,<, A} these functions have “Euler products’: if we define
for each prime p the following local zeta function

Fp(d=D apMp ™
n=0

then for x € {<,<, A}

e =TI &p.

p prime

They also provide an example to show that ¢ (s) does not necessarily decompose
in such a manner (see Lemma 7.4 [GSS]). The main result of the paper [GSS] is
that the local factors (f ,(s) are rational functions in p~*. This rationality result
is extended in [duSl] and [duS2] to the classes of p-adic anaytic groups and
finitely generated groups of finite rank and in [duS3] to a class of S-arithmetic
groups. The proofs al depend in part on expressing gﬁ‘,p(s) as a p-adic integral
with respect to the additive Haar measure on ZB‘ and then using logical techniques
introduced by Denef [D] and later extended by Denef and van den Dries [DvdD]
to prove rationality results for the class of “definable’ p-adic integrals.

In [du$4] the logica setting is exploited further to prove a number of uni-
formity results. Although powerful, these techniques give us little control on the
resulting rational functions. In particular they are insufficient to give us an an-
swer to the following question, raised in [GSS], about the uniformity in p of
these rational functionsin p~s:

Question 0.1. Let x € {<,4,A} and ' be a finitely generated, torsion-free
nilpotent group. Do there exist finitely many rational functions Wi (Y, X), ...,
W (Y, X) € Q(Y, X) such that for each prime p there exists i such that

(p(S) =W (p,p~9)?

Definition 0.2. If the answer to Question 1.1 is “yes’, we shall say that ¢{(s)
is almost universal horizontally or almost universal in p. If r = 1 we drop the
“amogst”.

(The qudlification “horizontally” in this definition refers to the fact that we
are varying the prime p. In [duS5] the concept of being aimost universal “verti-
cally” isintroduced in which the prime p is fixed and one considers how g;*’p(s)
varies in a tower of unramified extensions of Q. In the work of Igusa it is
this vertical direction which has received more attention. The two concepts seem
to be intimately related in the sense that once you can prove one direction, the
proof generaly yields universality in the other direction. In our context the global
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zeta function and its Euler product make the horizontal direction more natural to
consider.)

The Question 0.1 arose from experimental observation. For example, if Jg
denotes the ring of integers of a number field K and I' = Tr3 (¥«) is the group
of upper triangular matrices over ¢ then the form of g;*‘p(s) depends exactly on
how the prime p behaves in the extension field K. In [GSS] they go on to answer
this question affirmatively for the class of finitely generated free nilpotent groups
and x = A by producing an explicit formula in this setting for (rA’p(s).

In this paper we generalize this example to produce an explicit formula for
C{\’p(s) for a wide class of finitely generated, torsion-free nilpotent groups. We
get two important corollaries of this explicit result. In this setting

(1) ¢A(s) isamost universal in p;

(2) the rationa functions W(Y, X) satisfy a functional equation of the fol-
lowing form

Wi(Y ™1, X7 = (= DN YAEXPW(Y, X)

where n;, g and b; are explicitly computable integers.

It is perhaps this functional equation which is the most important result of
this paper. Although it is only a local functional equation, it is a new feature
in the theory of zeta functions of groups. This surprising symmetry lends more
weight to the claim that these functions are important natural invariants of a
group. In addition all known examples of the other (perhaps more interesting)
zeta functions (f ,(s) * € {<,<} that have been calculated also satisfy such a
functional equation. This experimental evidence is documented in [duS5]. Such a
functional equation hints perhaps at an analogue of the methods we shall introduce
here which would yield more precise knowledge about the functions g;*’p(s) * €
{<, 4}

The key to our calculation is to represent our zeta function as an integral with
respect to the Haar measure on an algebraic group G, the automorphism group of
the Lie algebra associated to I' (see Proposition 1.1). In contrast to the integrals
of [GSS], [duSl] and [duS2], we are able to exploit methods which yield an
explicit formula in terms of combinatorial data associated to the root system of
the algebraic group G and information about the weights of representations of G.

In §1 we explain this integral representation. This integral can in fact be
defined for any algebraic group G over a number field k and a representation p
as follows:

Definition 0.3. Let G be a linear agebraic group defined over a field k and
fix a k-rational representation p : G — GL,,.

0] If k is afinite extension of Qp we set

Zow.(8) = /G | detp(9)[*nc(9)
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where G* = p1(p(G(K)) "M (¥)), Yk is thering of integers of k and g denotes
the right Haar measure on G(k) normalized such that ;g (G(9%)) = 1.

(i) If kis afinite extension of Q and p is a prime of k we define
ZG(K),p0(9) = Za(k,),0(9)-

(When it is clear from the context which field k we are considering, we shall
often drop the reference to k and write Zg ,(s) and Zg ,, »(S).)

We a so define aglobal zeta function associated to G by considering the Euler
product of these local factors

Zaw.0(9) = [ [ Zew.p (9)-
P

We can represent Zg ), ,(S) as an integral over the adelic points of G.

This zeta function associated to an algebraic group is not a new zeta function,
but has been studied by Hey, Weil, Tamagawa, Satake, Macdonald and more
recently by Igusa for various reductive groups (see [He], [I], [M], [T], [W] and
references therein). Their interest in this function arose from the fact that it
generalizes the Dedekind zeta function of a number field K: let G = Gy, the
multiplicative group and p the natural representation into GLj; then for each
prime p of Jx we have Zg ,,(S) = (k,(S), the Euler p-factor of the Dedekind
zeta function (k(s). In §1 we provide some of the history of this previous work
which included calculations for GL,, (see Example 1.4 (1)) and GSp,,, (see Exam-
ple 1.4 (2)).

The subsequent sections (§2-56) are dedicated to evaluating this integral for
certain algebraic groups and can be viewed as a contribution to the existing work
on this noncommutative generalization of the Dedekind zeta function. Our work
can aso be viewed as giving an interpretation to the integral of Definition 0.3 as
a generating function counting substructures of algebras. This putsit in line with
the classica work on zeta functions which counts ideals in rings of agebraic
integers or simple agebras.

In §2 we start with the setting of an algebraic group G defined over a finite
extension of the local field Q,. We catalogue a number of conditions (Assump-
tions 2.1, 2.2, 2.3) under which we can replace the zeta function Zg ,(s) associated
with G by an integral over the connected component of the reductive part of G,
involving representations describing the action of the reductive part of G on
the unipotent radical. We then have to consider the following generalization of

Z5,p(9)-

Definition 0.4. Let G be a linear algebraic group over afield k. Let p: G —
GLn, be a k-rational representation, 5 € Homg (G, Gy) a k-rational character and
f : G — R an arbitrary function on G.
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(1) If k is afinite extension of Q, we define
Zat,0(9 = |, 1B(@F0(@nc(a).

(i) If k is afinite extension of Q and p is a prime of k we define
Z6(,0,8.0.0(S) = ZG(ky),0,8.6(9)-

Unfortunately, the 6 arising from the reduction of §2 need not in general be a
character of G. We give an example in §3.4 to demonstrate this, namely U2(Qp),
the upper triangular matrix algebra. As yet the only cases we can dea with in
85 are when 0 is a character. Nonetheless we are able to calculate gép(s) in this
particular example with the encouraging corollary that the result still satisfies a
functional equation.

We aso use the reduction of §2 to calculate a number of other explicit
examples of Cép(s) for certain nilpotent groups. In §3.1 we begin with the free
nilpotent group F of class ¢ on d generators. Its automorphism group modulo
the 1A-automorphisms is isomorphic to GLq4. (The 1A-automorphisms are those
automorphisms which act trivially on F/F’ where F’ denotes the derived group.
The group of 1A-automorphisms is a unipotent subgroup.) Hence combining §2
with Example 1.8 (1) we can compute (FAyp(s). This example has aready been
calculated using a different approach in [GSS]. In §3.2 we generalize the example
of §3.1 to give an expression for C{\’p(s) for a nilpotent group free in some variety
(e.g. metabelian). In §3.3 we construct examples of rings whose automorphism
groups are classical groups modulo the 1A-automorphisms. In particular we can
use Example 1.8 (2) to evaluate Cﬁp(s) explicitly in a number of these cases.
We refer to [duS5] for some further explicit computations of Zg ,(s) for classical
groups.

The explicit examples of §3 are valid for al primes p. We show in §4 that in
general, if we start with an algebraic group defined over a global number field K,
then for almost al primes p we can make the reduction of §2 from Zg , ,(s) to a
zeta function Zy ,, 3.0, (S) associated to the connected component of the reductive
part of G. This entails showing that G(K,,) satisfies the Assumptions 2.1, 2.2 and
2.3 for amost all primes p.

In §5 we consider the question of evaluating the zeta functions Zy , 5,4(S)
arising from the reduction of §2. We slightly generalize some recent work of Igusa
[I] to evaluate this zeta function under certain hypotheses on H (Assumptions 5.1—
5.5). To make his calculation Igusa utilizes the p-adic Bruhat decomposition
associated to the reductive group H(K,). The conclusion is an explicit finite
form for Zy , 5, 5,(S) in terms of certain combinatorial data associated to the root
system of H and information about the weights of the irreducible components of
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p. In lgusa’s calculation, the symmetry between positive and negative roots of H
gives rise to a functional equation which this expression satisfies.

In §6 we return to the perspective of §4 of a connected reductive algebraic
group over a global field K. However, unlike in §4, we cannot remove all the
assumptions needed for the computation of §5 by excluding finitely many primes.
Our present work therefore calls for even further generalizations of Igusa's cal-
culation. The conclusion of this present paper is then an explicit finite form for
Zg pp(s) for amost all primes p, whenever G is an agebraic group, over a global
field K, with the following conditions on H, the connected component of the
reductive part of G:

Assumption 1. The function § : H — R is a character (where 6 is defined
in §2).

Assumption 2. H has a K-split maximal torus.
Assumption 3. The maximal central torus of H is one-dimensional.

Assumption 4. There exists an irreducible component p; of p which ‘domi-
nates the remaining irreducible components.

(In fact we do dlightly better than this, by allowing H to be the restriction of
scalars of a group H over L > K which satisfies Assumptions 1-4. This provides
some non-split algebraic groups for which the present methods work. The be-
haviour of Zg ,, ,(S) then depends on how the prime p behavesin L.) Assumption 1
refers to the action of H on the unipotent radical of G. Note that al classica
groups satisfy Assumptions 2 and 3.

We have the following corollaries of this expression. The first Theorem is a
generalization of Igusa's work to some nonreductive groups over a global field
and some non-irreducible representations.

THEOREM A. Let G be an algebraic group over a field K where K is a finite
extension of Q and let p be a K-rational representation. Suppose G and p satisfy
Assumptions 1-4. Then

(1) Zg,(s) isalmost universal in p.

(2) For almost all primes p of K, Zg ,,,(S) satisfies a functional equation of
the form

Z6,ppOlp_p-1 = (= D"P*Zg,,(9)

for certain explicitly computable integersn,a and b.

THEOREM B. Let I' be a finitely generated torsion-free nilpotent group or a
ring additively isomorphic to Z9 whose algebraic automorphism group satisfies
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Assumptions 1-4. Then
(1) ¢f(s) isalmost universal in p; and
(2) for almost all primesp, {ép(s) satisfies a functional equation of the form

Lo®)pp-r = (= D),

for certain explicitly computable integersn,a and b.

Of course, the host of conditions we put on the groups in Theorem A and B
limit the examples of nilpotent groups for which these results apply. We give in
§3 some such examples including all finitely generated nilpotent groups free in
some variety (see §3.2) and some class two nilpotent groups whaose automorphism
groups involve various classical groups (see §3.2). From these examples we can
build more by taking for instance direct products. The hope is, however, that this
paper will serve as a first step towards a more general result in which we can
remove the conditions in Theorems A and B.

Acknowledgements. The first author would like to thank the Institute for
Advanced Studies and the Institute of Mathematics at the Hebrew Univerisity of
Jerusalem and the Royal Society/lsrael Science Foundation for hospitality and
support during the course of this work.

1. From nilpotent groupsto algebraic groups. The following two results
aready established in [GSS] hold the key to our calculation of (rA’p(s).

The first result is an integral representation for the following zeta function
associated with aring L, additively isomorphic to Z" (or Zp): let cm(L) denote
the number of subrings H with H ® Z, = L ® Z, for all primes p of index min
L, and define

(9= emL)m™>.
m=1

The function ¢{*(s) decomposes as an Euler product of the associated local factors
C[\’p(s). Let G be the algebraic group defined over Q (or Qp) such that

G(F) = Aute (L @ F)

for every extension field F of Q (or Qp). The choice of a basis for the lattice L
inside L ® Q (or L ® Qp) defines a faithful rational representation

p.G— GL,

with the property that G(Z,) = pfl(p(G(Qp)) NGL, (zp)) = Aut(L ® Z,).
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ProrosiTioN 1.1. For each primep
Lo = [ et p(g)fuc(o)
p

where G; = p~*(p(G(Qp)) N Mn(Zp)) and i denotes the right Haar measure on
the group G(Qp) normalized such that 1 (G(Zp)) = 1and | - |, isthe p-adic norm

on Qp.

The proof is straightforward and can be found in §3 of [GSS].

There are certain classes of groups for which one can define an associated
Lie algebra L such that for aimost all primes p the zeta functions (f ,(s) can be
replaced by the zeta functions ¢ (s). In §4 of [GSS] this is done for the class
of finitely generated torsion-free nilpotent groups. To each such group I there
is associated a Lie algebra L (Q) over Q (the Lie algebra corresponding to the
Malcev completion I'? of I under the Malcev correspondence). The injective
map log : I — Lr(Q) has the property that the set logI™ spans L (Q). In general,
logl will not be an additive subgroup of Lr-(Q). However in §4 of [GSS] the
following result is established:

ProrosiTion 1.2. Let I be a finitely generated torsion-free nilpotent group of
Hirsch length n. Then thereexistsf e N, depending only on n, such that L = log I'f
isaLiesubring of Lr(Q) and, for x € {<,<, A} and all primes p not dividing f,

¢rp(8) = ¢ p(9)-

If logl is alattice inside L (Q) then we can do dlightly better:

ProrosiTion 1.3. Let I be a finitely generated torsion-free nilpotent group.
SQupposethat L = logl isalatticeinside Li-(Q). Then for all primesp

CFp(9) = Lp(9).

Proof. We have that ¢7(s) = C?p (9 and ¢{'\n(9) = CLA®Zp(s) where fp is the

pro-p completion of I'. Let H < fp with H = fp. Then logH is aLie subring of
L®ZpandlogH ¥ L ® Z,. Conversely let M < L®Zpand M = L ® Zp. Then
M is closed under the Campbell-Hausdorff operation. Hence the image expM in
[, defines a subgroup which isisomorphic to I"p sinceM 2 L & Z,,. The map log
isindex preserving by the proof of Lemma 4.10 [GSS]. Hence the result follows.

m|
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(Note that in [duS4] we considered another class of groups for which Cép(s) =
le\(r)’p(s), namely the class of uniform pro-p groups. This equality dependsin part
on [Il]. However in general the automorphism group of L(I") will fail to have
good reduction mod p—see Assumption (5.3). So our present methods will not
give any information about (1 (s).)

By Propositions 1.1, 1.2 and 1.3, the study of C{\’p(s) for I afinitely-generated,
torsion-free nilpotent group reduces to the problem of evaluating the integral
arising in Proposition 1.1.

As we mentioned in the Introduction, this integral can be defined for any
algebraic group G over a number field K and a rational representation p. Since
it represents a generalization of the Dedekind zeta function of a number field it
has in fact received a certain amount of previous attention. Before we proceed to
our analysis of this integral we review some of this history.

Tamagawa [T] considered the case G = GL,, with the natural representation
and proved that the global zeta function (defined as the Euler product of these
local zeta functions) has meromorphic continuation to the whole complex plane
and satisfies a functional equation similar to (k(s). The zeta function attached to
GL, isin fact the zeta function of a simple algebra A over the rational number
field Q defined by Hey (see [De]). Consider the arbitrary maximal order 9 of A
and define

¢a(® = N(a)®

where the summation is taken over al the left integral ideals a of . Then (a(9)
is independent of the choice of the maximal order . If A is the full matrix
agebra of degree n over the field K then Ca(s) = [I, ZoLn,p(S) Where p runs
over the prime ideals of the maximal order ). Zorn [Z] gave a proof using the
zeta function of a simple algebra of the local-global theorem of Hasse-Brauer-
Noether that a simple algebra A is a full matrix ring over K if and only if al
local algebras A ® K, are full matrix rings over K,. In a sense we can view
Proposition 1.1 as a generalization of this interpretation of the zeta function of
an algebraic group as the zeta function of some algebra. In his investigation of
zonal spherical functions, Satake [Sa] began the calculation for G = GSp,,,, the
general symplectic group, proving that it was a rational function. Subsequently
Macdonald [M] completed the calculation giving an explicit finite form for the
zeta function. We record here both Tamagawa's result and the first few cases of
Satake and Macdonald’s calculation.

Examples 1.4. (1) Fix afinite extension K of Q. Let G =GL,and p : G(K) —
GL (K) the natura representation. Then for each prime p of K

n—-1

ZG,pp(9) = H Ckp(s—1)
i=0
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where (k ,(S) denotes the Euler p-factor of the Dedekind zeta function (k (). Note
that the meromorphic continuation and global functional equation of the Euler
product [, Zg,,»(s) follows from the corresponding properties of (k(s).

(2) Let G = GSp,,, the group of symplectic similitudes defined as follows:
let i denote the n x n matrices with 1's along the reverse diagonal and zeros

elsewhere, and let
. 0 i
=l 5 o

then GSp,,, (K) = {x € GL2n (K)|Xi(*X) = u(X)j for some u(X) € K*} where (*x)
denotes the transpose of x. Let p : GSp,, (K) — GL2n (K) be the natural repre-
sentation. Fix a prime p of K and denote by q the residue degree of K.

(i) If n=1then

1
(1-g9@1-qgs)

(Since G(K) = GL» (K), thisiis of course a specia case of (1).)
(i) 1f n=2then

ZG,p,p (S) =

(1+ag" %)
1-a90- 01— )

ZG,p,p (S) =

(i) If n=3then

(1-g73)(1 - 31— )1 - gt~%)

ZGpp(S) =

The first two examples can be found explicitly in [Sa]. The Euler product of
these functions can be expressed in terms of (k(s) and hence have meromorphic
continuation and satisfy a global functional equation.

Example (iii) is based on our own calculation using Macdonald's explicit
formula[M]. In [duS5] it is proved that the Euler product in Example (2) (iii) has
anatura boundary at %(s) = 4/3. Thus there is no hope of extending Tamagawa's
global results to more general algebraic groups.

Note that in example (1) the zeta function associated to GL, and K = Q is
none other than the zeta function CZAan(s) = gzgn’p(s) counting subgroups in the
free abelian group Z" since GL, (Q) is the automorphism group of the trivia Lie
algebra Q".

In the next section we begin our analysis of these integrals. Are there any
restrictions on the sort of algebraic groups G that can arise in our setting? By a
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result of Bryant and Groves [BG], any Q-algebraic group with any given repre-
sentation can be realized as the automorphism group of a nilpotent Q-Lie algebra
L modulo the group of its | A-automorphisms. (The | A-automorphisms are those
automorphisms which act trivially on £/£" where £’ denotes the derived Lie
algebra. The group of 1A-automorphisms is a unipotent subgroup.) So for our
applications we need to consider Zg ,,,(S) for any algebraic group G.

2. Reduction to reductive groups. Let G be a linear algebraic group de-
fined over k where k is afinite extension of Q, and let ¥ be the ring of integers
of k. Let p = G — GL,, be a faithful k-rational representation. Let N(k) be the
unipotent radical of G(k), and let Gg denote the connected component of G. We
can write Go(K) as a semidirect product of N(k) and its reductive part, i.e., there
exists a reductive k-algebraic subgroup H of G such that Go(k) = N(k)xH(K). In
this section we will show, under a host of conditions on G and the representation
p, how to replace the integral

Za,(9= [ |detp(9)Hc(a

defined in Definiton 0.3 by an integral over the connected reductive part of the
group. In §4 when we consider an algebraic group over a global number field K
we shall show that for aimost al primes p of K these conditions on G(K,) and
p are true.

We begin by reducing to the connected component of G. We need the fol-
lowing:

Assumption 2.1. G(¢) maps onto G(K)/Go(K).
Under this assumption we prove:
PropoSITION 2.1. Zg ,(S) = Zg,,,(9)-

Proof. Let gs,. .., 0y be representatives from G() for the left cosets of Gg(K)
in G(K).

Claim.

@ G"={JaiGg; (b) G(Wh) = GiGo(ti).
i=1 i=1

We prove (a); (b) follows similarly. The inclusion G* 2 L, 6iG], is clear. If
g € G then g = gigo € giGo(k) for someii. Since gi € G(Yk), p(go) = p(d; 'g) €
Mn(9%). Hence g € giG§ and the claim (a) is established.
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The proposition follows immediately from:

2609 = [ o 10800 6(9

i=1 920

n
= Z/+|d9tp(9i90)|sn_1ueo(go)
i=1 “Go
= Zg,p(9)
since | det p(gi)| =1 and pg = N~ug, by claim (b). m|

For the rest of this section we shall assume that G is connected. We suppose
further that the representation p : G(k) — GL, (k) satisfies the following:

Assumption 2.2. There exists a partition n = ry +--- + rc such that in the
underlying vector space V = k", if weset Uy = 0x --- x Ox Ki x0---x0
then U; is an H(Kk)-stable subspace and N(Kk) acts trivially on V;/Vi:1 where
Vi=Ui@- @ U, i.e, p decomposes into block form such that p|H is block
diagonal and p|n is unitriangular.

By a change of basis we can aways reaize Assumption 2.2. However, a
change of basis can also change G*. So it is important at this stage to assume
that we have chosen the representation to satisfy Assumption 2.2. In §4 when we
work over a global field K, we shall use the fact that a change of basis does not
change G* for almost all primes p and hence we can drop this assumption in that
setting.

Denote by p; the induced representation of H(k) acting on U; (i.e., the diagonal
block entries of p|n) and s = dimV/Vi.1.

Let N; be the kernel of the natural map ¢ : N — Aut(V/Vis1). Define the
representation ;i : G(K)/Ni — GLn (K) by ©i|Hw) = plH) and

Define (G/N;)* to be the integral matrices with respect to this representation
©i, i.e.

(G/N)* = ¢ i (GK)/Ni) N (Mn(W)))-

Assumption 2.3. If g € (G/N;)* then there exists g € G* such that gN; = T.

Anelementn € N;/Ni+1 C Aut(V/Vi+2) isdetermined by its action on abasis
Ug,...,Us,, for V/Vie. If i =1,...,5 n(y) = u + 7 for some z € Vi+1/Vis2
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and n(y)) = u; if U € Uj+1. The map n — (zy,...,2) defines an embedding of
N; /Ni+1 as ak-subspace of (Vi+1/Vi+2)3. Therefore for each h € H thereisamap

7(h) : Ni/Ni+1 - (Vi+1/Vi+2)S

defined by restricting pi>7 to the subspace Ni/Ni1.

Denote by py the Haar measure on H(k) normalized such that H(¢) has
measure 1 and sy, /n;,, (respectively un) be the Haar measure on Ni/Niyq (re-
spectively N) normalized such that N;/Ni+1(d9k) = gpfl(goi(Ni/NHl) N Mn(9))
(respectively N(v¥x)) has measure 1. By Assumption 2.3, we can choose a topo-
logical splitting N = [T Ni/Nis1 such that N(d) = [T, Ni/Nisa (). Since
G(%) = H@IN(W) we have that i = pn - [T i /n,, - The problem in re-
ducing to the reductive part H of the group G arises from the fact that G* # H*N*.
Foreachi=1,...,c— 1 we need to define the following functions §; : H — R

0i(h) = pin /N, ({00 € Ni/NieaIni7i(h) € Mgxery,, (90 })-
THEOREM 2.2. Under Assumptions 2.1, 2.2 and 2.3

c—1

Ze,(9)= [ |detp()]* [T ti(pan (.

i=1

Proof. Denote by xx(g) the characteristic function on the subset X C G.
Then

Zo (9 = /G RREICILZCIEE
= [ funth)
H(K)
where f(n) = [ e (nh)] et () ()

(see [N] p. 87). Since | det p(nh)| = | det p(h)|, to prove the theorem it suffices to
prove that for every h € H(K)

c—1
2.1) /N xe (h)an () = xue(h) TT 4:(h).

i=1

We prove this by induction on c. The case ¢ = 1 corresponds to the situation
in which G is already reductive. Suppose now that (2.1) is true for | < c. Let
pr = TIE5% 1o, @d ing_, be the Haar measures on N = N/Ne_1 = ¢c_1(N)
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and N¢_1. Then un = pg - pine_, and

/N X+ (h)n(r) = /Wf(ﬁ)un(ﬁ)
where

f(m) = /N v (e )4 (o)

and 1/1;11(?1) € N isalifting of n € N to N chosen in such a way that if nh ¢
(G/Ne_1)* then ¢2 1 (Mh € G*. This choice is possible by our Assumption 2.3.
Now nc,lwc‘_ll(ﬁ)h € G" if and only if the following conditions are satisfied:
nh € (G/N¢-1)" and

p(ne_a (M)

p(Ne-1) - p(g4y(Mh)
|r1 C 0 ﬂcfl(l)

Iy Ne—1(c—1)

Ire

pih) ... * n(1)
" po sty nie—1) | <
pe(h)
where ne_1(i) € My, r(K) and n(i) € My, r.(J«) and
pi(hy ... * 0
() = ' : :
Fe-i() pea(h) O
pc(h)
So ne_19h; 4 (Mh € G* if and only if Iih € (G/N¢_1)* and
n(1) Ne—1(1)
: + : peH(h) € Mgy re(9K)-
n(c—1) Ne—1(c—1)
Therefore
f(M) = X(/Ne_y+(Mh)

ey ({Me-1 € Neoa < VE [ ne_are 1(h) € My rc (00}

X(G/Ne_1)* (M) - Oc—1(h).
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The theorem then follows by applying the induction hypothesis to the group
G/NC_]_. D

In §5 and §6 we shall show how to evaluate such integrals over reductive
groups in the case where the 6; are characters on H. Unfortunately this is not
always the case. We give an example in §3 of a nilpotent Lie algebra L such that
the maps 6; associated to the automorphism group of L are not characters.

Note that if n(h) : Ni/Nisa — Ni/Nisz < (Vis1/Vis2)® then 7 : H —
AutN; /Ni+1 defines a representation of H and 6;(h) = | det7(h)| 2, a character
of H.

There are two classes of nilpotent groups for which the automorphism groups
have this property.

THEOREM 2.3. Supposethat I isafinitely generated torsion-freenil potent group
and G is the automorphism group of the associated Lie algebra and H is the
connected component of the reductive part of G. Suppose further that either

(i) T isaclass2 nilpotent group; or

(i) ¢ =F/~.F whereF isthe free group in some variety and ~ is the cth
term of the lower central series.

Thend; :H — R(i=1,...,c—1)isacharacter of H where6; isdefined as above.

Proof. Let £ = L ® Q be the Q-Lie algebra associated to I' and £; = i L.
Then £; is a G-stable subspace and N, the unipotent radical of G, acts trivialy
on Li/Li+1. Let ug,...,us,, be abasisfor £/Li+o. Then for any z,...,7, €
Li+1/Li+2, the linear map defined by

a:U—uU+zforj=1,...,.9

a:y—uUforj=g+1,...,54

lifts to an automorphism of £. Hence N;i/N;+1, under our identification, is the full
Q-space (Li+1/Lis2)™ and 7i(h) = PiGBSl D (Liv1/Lis2)* — (Liv1/Lir2)>*. As we
indicated above this implies that the maps 6; : H — R are charactersof H. O

3. Examples.

3.1. Free nilpotent groups and Lie algebras. Let £ be the free nilpotent
Lie algebra over Q of classc > 2 on d > 2 generators and let K be a finite
extension of Q of degree n. In this section we calcul ate the zeta function C{;KL,p(s)
where L is a Z-Lie subring of £ with the property that £ = L ®z Q. To do this
we shall use Theorem 2.2 above. We therefore need to know the structure of the
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automorphism group Autg KL of KL as a Q-algebra. For a general Lie algebra
such a question may not have such a simple answer, even with knowledge of
Autk KL. However, for the free nilpotent Lie algebra KL, Segal [Se] has shown
that this automorphism group is relatively easy to determine. Once we have
calculated (QKL‘p(s), we can immediately deduce as a corollary of Proposition 1.2
an expression for the zeta function (é’p(s) where G is either the free nilpotent
group F of classc > 2 on d > 2 generators or FUK (when this makes sense). We
explain what this qualification means at the end of this subsection. The calculation
of géyp(s) in this setting was aready done in [GSS]. The reader who would prefer
to ignore the complication arising from extending the field may easily do so.
However since this extension was considered in [GSS], the fact that our answer
agrees with that of [GSS] does provide us with a useful check for the formula
of §2. Also it provides us with examples where the reductive group H over
Q is non-split but is the restriction of scalars of a split group H over K, i.e.
H(K) = GLg (K), for which we can calculate Zy),,,» (). We shall generalize this
argument when we come to §6.

Let uy,...,Uq be free generators for £. Let 4L denote the ith term of the
lower central series of £ and define r; = dimg i L/7i+1£ and s = dimg £/7i+1L.
There are formulas given by Witt for these dimensions:

ri=1/iy " p(j)d”

jli

where p(j) isthe Mobius function (see for example [MKS] Theorem 5.11). There
exists a sequence of elementszy, . . ., zg, called aWittbasisfor £ with the property
that

(1) for s +1 <1 <s41, 2 = [Ujyq), - - - Uiy ] G2, - - Jisa(l) € {2,...,d})
is a homogeneous Lie commutator of lengthi+1 in the free generators ug, . . ., Ug;
and

(2) z5+1,...,25 form a linear basis over Z for the Lie elements of length
>i+1

See for example [MKS] §5.6.

We choose the lattice L to be the Z-span of the basis {z, ...,z } and define
Li+1 to be the Z-span of {zs+1,...,%,, }. We then have a decomposition

L=L1® &L

Note that if we take any Z-Lie subring L’ of K£ such that £ =L’ ®z Q, then
for amost al primes p

Cli\’ ,p(s) = C1/9\K L,p(s)-

So by choosing the lattice L we are loosing very little. Let {tj,...,t,} be abasis
for ¥k over Z then {tizy | i =1,...,n;j = 1,...,5} is a Z-basis for the Lie
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ring Yk L. This basis defines a Q-rational representation p : G — GLpg, (Where
G(F) = Autg (KL ®q F) for every field extension F of Q) with the property that
G(Z) = Autz (VkL). By Proposition 1.1, for each prime p,

Chao® = [ 106t p(0) (@
P

where G} = p~*(p(G(Qp)) N Mng,(Zp)).

Let R=K ®q Qp. (Note that R is not a field but is rather the direct product
of fields K, for primes p of J dividing p.) Then G(Qp) = Autg, (RL). Each
Qp-linear transformation o of RL is represented by a ¢ x ¢ matrix (ajj) with
aij € Homg, (RLi, RLj). We quote now a result from [Se] which determines the
structure of Gp = G(Qp).

ProposiTion 3.1. Gp = I'p x Autg, Rwhere ", consists of all Qp-linear trans-
formations o = (cyj) of RL satisfying

a1 € AUtrRL1 = GLg (R)

agj € Homg (RL1, RE)) 2<j<c-1)
aie € Homg, (RL1,RLc)

aij = Yijlags, ..., oqj-iv) (2Li<j<0)
aj =0 i>)

where 1) are Q-polynomial maps depending only on £. Also if oy = ldre, and
ajj =0for 2<j <ithen oy = ldrg, and ayg =0for 2 < k < j <i+k.

The group Iy is the connected component of the Qp-algebraic group Gp.
Note that it is aimost the Qp-points of the restriction of scalars Ry g Autk (KL).
It is dightly larger because in the top right-hand corner we only demand that
a1c € Homg, (RL1, RL,) rather than asc € Homg (RL1, RLc).

Let N; be the kernel of the map ' — Autq, (RC/7i+1(RL)) for each i =
1,...,c. Each N; can be identified with the subgroup of ', consisting of o = («j)
with ag1 = Idrg, (Which implies aji = Idrg;) and ag = 0 for 2 < j <i (which
implies oy = 0 whenever 2 < k < j < i+Kk). The group N; is known as the group
of 1A-automorphisms and in this case coincides with the unipotent radical of I'p.
If we set H to be the subgroup of ", consisting of all diagonal elements @ = («j)
with «jj = 0 for al i Z j, then H is the reductive part of 'y and is isomorphic
with GL4 (R).

We are now in a position to prove that the three assumptions of the previous
section are true in this setting.
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LemmA 3.2. (1) Gy(Zp) maps onto Gy /Tp.

(2) The representation p decomposes into block form such that p|y is block
diagonal and p|y, isunitriangular.

(3) Ifg € (Mp/Ni)* then there exists g € ' such that gN; = g. (Recall that
(Tp/Ni)* is defined with respect to the representation ¢; : /N — GLng(Qp)
defined in §2.)

Proof. (1) Autq, R fixes the subring ¥k ®z Z, and hence also the submodule
JkL ® Zp. So Autg, R < Gp(Zp) and hence Gp(Z,) maps onto Gp/I'p.

(2) is immediate.

(3) Since {z, ...,z } isa Z-basis for the Lie ring L with the property that
each element of the basis is a homogeneous Lie commutator in the generators
{zs,...,zq} = {ug,...,ug}, if g € I'p and the coefficients of g(tiy) (for i =
1,...,nandj=1,...,d) with respect to the basis {tiz|i =1,...,n;j=1,...,5}
are al integral then also the coefficients of g(tiz) (for i = 1,...,nand j =
1,...,s) are integral. Hence the polynomial maps 1j; of Proposition 3.1 can
be defined over Z. Hence if g = (i) € I'p then g € 'y if and only if oy €
Homz, (kL1 ® Zp, JkLj ® Zp) for 1 < j<c.

Choose an element g’ = (aj) € p with the property that g'Ni = g. Then
oy € Homgz, (VkL1 ® Zp, 9kl @ Zp) for 1 < j < i. We are required to find
g € I} such that g'N; = gNi. Set g = (i) where

Qjj = Ozi/j forj <i
ajj = 0forj >
and aij = ij(aan, ..., aqj-ix) for 2<i<j<ec.

By Proposition 3.1, g € I'p and g'N; = gNi. But now ay € Homgz, (¥kL1 ®
Zp, 9Ly ® Zp) for 1 <j < c. Hence g € I';. This proves (3). m|

Lemma 3.2 alows us now to apply Theorem 2.2. Combining this with The-
orem 2.3 we have

Chao® = [ 10etp(9) el
p

c-1
= [ . Ideto(t/* [T | det (]
Hp i=1

c c—1
) /H+H | det pi(n)|° T ] | det mi(h)| = ara(h)
1

pi=1 i=

where 77 : H — Aut(N;/Ni+1) is the representation of H defined by restricting
pS" to the subspace Ni/Nis1 of (RLi+)3".



LOCAL ZETA FUNCTIONS OF NILPOTENT GROUPS 57

To complete the calculation we must analyze the representations p; of H
acting on RZ; and the representations 7; of H. From our description of N;, for
i < ¢—1we can identify N;/Ni+1 with Homg (RC1,RLi+1) = My xr,,(R) <
Mrinxri,n(Qp) and Ne—1 with Homg, (RL1, RLc) = My jnxren(Qp)- Hence

|det i (h)| = | detpi+1(h)|™t fori<c—1
and | det . 1(h)| = | det pc(h)|™".

This leads to the following expression:

c—1

(B Cap(®= [ |detpa() [T | cet i(]* ™| det pel)f* "“ran(h,
p i=2

By Proposition 3.1, we know that p;(h) = «ji = ¥;i(a11) and is thus determined
by the matrix pi(h) = a13. The following lemma expresses the determinant of
pi(h) as a function of p1(h). The proof is essentially a reconstruction (and small
correction) of the proof of Lemma 7.8 [GSS] in our context.

Lemma 3.3. | det pi(h)| = | det p1(h)|"i/9.

Proof. Since by Proposition 3.1 H is in fact the restriction of scalars of a
group over R we can in fact consider p(h) as an element of GLg, (R) where the
representation is taken with respect to a Witt basis. Without loss of generality we
may suppose that i = ¢. Since R= K ®q Qp isadirect product of the fields K, for
the primes p of Jk dividing p, it suffices to consider h € Autg, (L ®k Ky). Let 4,
denote the ring of integers of Ky, then 1, is a principal ideal domain. Contrary
to the statement in the proof of Lemma 7.8 [GSS], p1(h) is not necessarily
diagonalizable. However we are required to establish an algebraic identity on
the entries of the matrix p(h) for h € H. Hence it suffices to prove this identity
on a K,-Zariski dense subset. Since the subset of H for which p1(h) € GL4(Q)
is diagonalizable over GLq (Q) is K,-Zariski dense, we may assume that p1(h) €
GLg (Q) is diagonaizable over GL4 (Q).

We may further suppose that we have chosen the Q-basis {uy,...,uq} for
L1 ® Q with the property that p1(h) is a diagona matrix with respect to this basis
since a change of basis does not affect the calculation of the determinant. We
extend this basis to a Witt basis {z,...,z.} for L ® Q. Then by property (1)
of a Witt basis p¢(h) is also a diagonal matrix with entries \j,q) - - - Ajeqy for
S-1+1 <1 < s where pi(h)y; = Aj;.

Setting & = ord, \; and |9, : p| = q we have

I=sc_1+1
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Note however that for any permutation o of {1,...,d} we could have chosen a

different ordering U} = Uy(1), . . ., Uy = Uy(qg) Of the free generating set resulting in
a different basis {[yj u ]} for L ® Q. With respect to this basis

1’ e

Hencef(ay(1),- .., a8,(a)) =f(as, ..., aq) for any permutation o. Thusf(ay, .. ., aq)
is asum of cm terms g in which each of ay,...,a4 occurs equally often, and
so

f(ag,...,aq) =cme(ag +--- +ag)/d.

The result follows. |
Combining this lemma with (3.1) we have:

COROLLARY 3.4.

Crwo® = [ | detpa®I™ Pun(h)
p

wherea=(ry+2rp+---+crg)/dandb=(2rp +--- +(c— L)re_1) + ncre.

We now turn to the question of evaluating this integral.
As we pointed out in the proof of Lemma 3.2 (3), h e H; if and only if

p1(h) = a1 € Autr(RLy) N Homzp (VL1 ® Zp, Ykl ® Zp).

Since K ® Qp (respectively Jx ® Zp) is adirect product of K, (respectively 1k, )
for primes p of ¥ dividing p, by choosing a basis ty, ..., ty, for ¥k, over Z
where [K, : Qp] = n,, we can write

Autr (RL) N Eﬂdzp (UL ® Zp) = HAUth (Kpﬁ]_) N Endzp (ﬂKp Li® Zp)
plp

= H GLg (Ky) N Man, (Zp)
plp

= ] GLa(Kp)".

plp

If ar = (hy) € Autr (RL) = Hp‘pAuth (KpLy) then det (1) = Hp\p det (hy).
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Piecing al this information together we can write

es®=TL [ 10t ey (hy)

(since pun = pioLyR) = [lppp HeLg (k) WHere pigLyk,) is normalized such that
GLg (Vk,) has measure 1).

However, we have aready given an expression for the integrals on the right
of this equality in Example 1.4 (1). Hence to summarize we have:

THeEOREM 3.5. Let £ be the free nilpotent Lie algebra over Q of classc > 2
ond > 2 generators and let K be a finite extension of Q of degree n. Let L be the
Z-Lie subring of £ spanned by a Witt basisfor £. Then for each prime p

d—1
C1/9\KL,p(S) = H H Ckp(@s—b—i)

plp =0

wherea = (rp+2rp+---+crg)/dand b = (2rp + -+ + (¢ — L)re_1) + nere,
ri = dimg viL/~i+1L and (k ,(S) isthe Euler p-factor of the Dedekind zeta function
k(9)-

Let F denote the free nilpotent group of classc > 2 on d > 2 generators.
As explained in section 7 of [GSS], if ¢ = 2 then FK is a torsion-free finitely
generated nilpotent group which we shall call G. But in general, F'K is not a
group. However Fk®Zp is a pro-p group for al p > ¢, and for such p we write
Fx®Zp = G, and define

Cpl® = 4,9

abusing notation as in [GSS]. As we explained in §1, to each torsion-free finitely
generated group there is associated a Lie algebra over Q. In the present setting
the Lie algebra associated with F is just the free nilpotent Lie algebra £ over
Q. The injective map log : F — £ maps F' onto a Z-Lie subring L of £ for
some f € N. For those p for which Gy, is defined logGh = kL ® Z, < RL. In
Proposition 1.2 we saw that for almost all primes p

CA (9 = ChrLoznl®-

Therefore Theorem 3.5 has the following corollary:
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CoRroLLARY 3.6. For almost all primes p

d—1
6p® =TT IT Ckplas—b—i)

plp =0

wherea=(ry+2rp+---+cr¢)/dandb = (2rp+---+(c— Dre_1) +nercandri is
the rank of i (F) /vi+1(F).

Note that in fact by working directly in the group G one can get the result
of Corollary 3.6 for all p if c=2 or otherwise for p > ¢ (see [GSS]).

We can also consider the graded Lie ring gr (L) = @i, Li/Li+1. The auto-
morphism group of gr (L) ® R has the same structure as Autq, (RL) described in
Proposition 3.1 (with different polynomia maps ;). Hence we can perform the
same calculation for gr (L) to calculate C@(L)’p(s).

Definition 3.7. We shall call two Lierings L; and L, isospectral if they are
non-isomorphic but

¢Lup(® = ¢ p(9)-

We then have the following:

THeorem 3.8. If gr (L) = Dz, Li/Li+1 denotes the graded Lie ring of the Lie
ring L of Theorem 3.5 then gr (L) and L are isospectral.

3.2. Nilpotent groups and Lie algebrasfreein some variety. We havein
fact done enough work in the previous section to write down a general formula
for a nilpotent Lie algebra free in some variety. Let F be the free Q-Lie algebra
in some variety and let 7. = F/~.F, a nilpotent Lie algebra of classc > 2 on
d generators, say. Then F. is the surjective image of L, the free nilpotent Lie
algebra over Q of class ¢ > 2 on d generators considered in the previous section.

Let uy,...,uq be generators for Fc/voFc and define ri = dimg ~iFc/vi+1F¢
and s = dimg F¢/vi+1F. Then we have the concept of a Witt basis zy, . . ., zg, of
Fc as defined in §3.1. (To construct such a basis we can take the image of a Witt
basis in £ and choose a subset which is a basis for F. as a Q-vector space.)

We again take the lattice L to be the Z-span of the basis z, ..., z,. Note
that if we had started with a Z-Lie algebra L’ free in some variety (perhaps with
torsion) then, for almost all primes p, (/) Jrolrp(S) = ({'p(s) for some such lattice
L inside F..

Let G = Autg (Fc), then this choice of lattice defines a Q-rational representa-
tion p : G — GLg. Itisnot hard to verify that the freeness of . implies that the
structure of G(Qp) is the same as that described in Proposition 3.1. The choice of
our lattice as the Z-span of a Witt basis implies that, as in Lemma 3.2, Assump-
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tions 2.1-2.3 are true and hence we can apply Theorem 2.2 and Theorem 2.3 to
calculate ¢{"(s):

o = [ Idetp(9)na()
P

c c—1

- /+H|detﬂi<h>lsﬂ|detn<h)|*1uH(h)
Hp i=1 i=1

- / | det pa(h)[TT | det pi(h)|*~" i ().
Hp i=2

ProposiTION 3.9. (1) | det pi(h)| = | det p1(h)| /9.
(2 he Hy ifand only if p1(h) € My, (Zp).

Proof. (1) The proof of Lemma 3.3 carries through in our setting since it
depends only on property (1) of the Witt basis and the fact that the freeness of
Fc implies that any permutation of the basis uy, . . ., ug induces an automorphism
of L.

(2) This follows from the fact that the polynomials ;; defined in Proposi-
tion 3.1 will also be defined over Z in our setting. O

Since HJ = (GLq), we have exactly the same calculation as above:

THeorem 3.10. Let F be the free Q-Lie algebra in some variety and let 7 =
F/~vcF. Let L beZ-Liesubring of F. spanned by a Witt basisfor .. Then for each
primep

d-1
Lp® =] ¢les—b—i)
i=0

wherea = (ry+2rp+---+crg)/dandb = (2rp+--- +cre), ri = dimg v L/7i+1L
and ¢p(9) = 1/(1 - p9).

We preferred in the above to ignore the question of calculating (QKL’p(s)
for some field extension K of Q. If the variety is such that 7. satisfies the
rigidity condition of §2 of [Se] then Autg (KF¢) has the same structure as in
Proposition 3.1, i.e., aimost the restriction of scalars R o Autk (KFc) except
for the top right-hand corner. In this case the above theorem can be refined to
read exactly as in Theorem 3.5.

In the previous section we gave formulas for r; for the free nilpotent groups.
Bachmuth considered the variety of metabelian Lie algebras giving corresponding
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formulas for r;:

ri = d@i — 1) (i ;d_—22>
(see Lemma 3 of [Ba]).

Given these explicit expressions, is it possible to find a free nilpotent Z-Lie
algebra Ly of class ¢; and a free nilpotent-metabelian Z-Lie algebra L, of class
¢ which are isospectral (in the sense of Definition 3.7)? Despite some concerted
effort with the aid of a computer we were unable to find such an example.

As in §3.1 if we take a torsion-free finitely generated group F that is free
in some variety then the Lie algebra £ over Q associated to F¢ = F/~c+1F will
be free in the corresponding variety. To prove this recall that the Lie algebra
corresponds under the Malcev correspondence to the the Malcev completion FQ
of Fc. We can then use the Malcev correspondence to check that the universal
property is satisfied for the Lie algebra £. The injective map log : Fc — £ then
maps Ff; onto a Z-Lie subring L of £. By Proposition 1.2 we can then deduce:

THeorem 3.11. Let F¢ = F/~c+1F where F is a torsion-free finitely generated
group free in some variety. Then for almost all primes p

d-1

CFp® =] ¢plas—b—1)
i=0

wherea = (r1 +2rp +--- +crg)/d, b = (2ro + -+ + cre) and r; is the rank of
’Yi(Fc)/’YHl(Fc)-

3.3. Realizing classical groups. In this section we construct examples of
Z p-rings whose automorphism groups modul o their unipotent radicals are classical
groups.

Let V be a vector space of dimension n over Q,. We assume that there is
defined on V a nonsingular bilinear scalar product ¢ : V x V — Qp. We can use
this scalar product to define a Qp-algebra structure on £ =V x Qp. For (X, z1)
and (xz,z) € L define

(X1, 21) * (X2, 22) = (0, p(X1, X2)).

This makes £ into a Qp-algebra with center Z(£) =0 x Qp.

Choose abasis {x1, . ..,xn} for V and define z to be an element of the center
Z(L) of £ with the property that ¢(x,X) € Zpz for al i,j = 1,...,n. Then
the Z,-span of {xy,...,X, 2} is asubring of £ which we shall cal L. We shall
calculate Cﬁp(s). To do this we must know the structure of G, = Autg, (£). This
is provided by the following lemma. We denote by GO (¢) the nonsingular linear
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transformations T of V which are similitudes, i.e., which satisfy the condition
B(Tx1, Tx2) = p(T)p(Xa, X2) for @l xq, %2 € V where u(T) € Qp.

Lemma 3.12. Gy isthe group consisting of all Qp-linear transformations
(6 (0%
o= < é—l a;i) (= GLn+1 (Qp)

satisfying
an € GO (¢)

(o) € Qp
Homg, (V, Qp) ¥ Qp.

Q22

m

12

Proof. Suppose that « is an automorphism of £. Then a(X) = a11(X) + Az
where a1 € GLn (Qp) and a(2) = a2z since « preserves the centre Z(£). Then

a(X) * a(X) = ¢(aa1(X), a11(X)).

Since « is an automorphism we have
a(Xi) * (X)) = (X * %) = a22p(Xi, X))

Hence a1 € GO (¢) and o = p(an1).
That such a map « defines an automorphism of £ is an easy exercise to
check. O

The reductive part H, of the group G, is isomorphic then to the classical
group GO (¢) and the unipotent radical Ny is an abelian group isomorphic to Qp.
For this algebraic group (and its representation) the three assumptions 2.1-2.3
are satisfied:

Lemma 3.13. (1) Gy is connected.

(2) The representation p : Gy, — GLn+1 (Qp) With respect to the basis
{X1,...,%n, 2} decomposes into block form such that p|Hp is block diagonal and
PINy(Qp) IS Unitriangular.

(3) 1f g € (Gp/Ny1)" then there exists g € G such that gN; = g.

Proof. (1) is well-known and (2) is immediate. (3) Choose an element g =
(aj) € Gp with the property that g'Ny = G. If we set g = («jj) where o = o for
i=1,2and a;p=0thenge Gg by Lemma 3.12 and g'N; = gNj. O
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We can therefore apply Theorem 2.2 to evaluate ¢{\,(s). Since Ny isidentified
with Qg the map ¢(h) of Theorem 2.2 is just the character | det p1(h)|~". Hence

Lp() = /H | det py(n)[>"| det pa(h)|amp ()
p

where p;1 : Hp — GO(f) < GLn (Qp) isthe natural representation with respect to
the basis {xq,...,%n} and p2 : Hy — Qp is the representation p2(h) = (T) where
T = p1(h). Let A be the matrix representing our bilinear form, i.e. aj; = ¢(x;, Xj).
Then

TA(T) = (M)A

where (‘T) denotes the transpose of T. Taking determinants of both sides we see
that

| det po(h)| = [(T)| = | det T|/" = | det py(h)[*/".

Now if p1(h) € Mn(Zp) then p(p1(h)) € Zp and hence po(h) € Z,. Thus the
integral points are determined by p; and we can write

LemmA 3.14.

(o9 = /GO o | deth/S2/0 60 ) (h).

This example realizes concretely the zeta functions associated to classical
groups as the zeta functions of some Z-ring L.

If the form is skew symmetric then the corresponding ring has the structure
of a Zp-Lie ring. Suppose that A = (a;;) defines such a skew symmetric form.
Define a group by the following presentation:

G=(X1,..., %, 2Z[x,%] = 2%,[x,Z = 1).

G is a class two nilpotent group. The Lie ring associated then to the pro-p
completion of G is precisaly the ring constructed above corresponding to the skew
symmetric form defined by A. In this manner we can realize the zeta functions of
classical groups defined by skew symmetric forms as zeta functions of nilpotent
groups (with a change of variable).

For example, if we take

G = (X1, %2, X3, Y1, Y2, Y3, 2%, Vil = 20, [yi, yi] =[x, %] = [x,4 = [vi,4 = 1)
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then using Lemma 3.14 and Example 1.4 (2) (iii) we get

(1+ plo—48 4 p20-4s 4 2145 4 22— | jA1-8s)

Cop(S) = (1= plo—5)(1 — pP—%)(1 — p2- =) (1 — pB )’

It is proved in [duSh] that the global zeta function ¢5(s) = TT¢gp(S) cannot
be meromorphicaly continued to the whole complex plane but has a natural
boundary.

In §5 we give aformulafor Zg ,(s) for a Qp-split reductive group G involving
the combinatorial data associated to G. In the case where the group of similitudes
of ¢ splits in Q, we can feed in the corresponding data for G = GO (¢) to get
similar explicit expressions to Examples 1.4. We record some of these examples
(calculated with the aid of a computer) in the forthcoming survey [duS5]. Notice
that if we had started with a form defined over Q then GO (¢)(Qp) may have a
different structure depending on the prime p (e.g., the group may be Qp-split for
some primes but not for others). This behavior will be consistent with a positive
answer to Question 0.1 about the uniformity in p of gﬁp(s) and will be considered
in the sequel to this paper when we consider non-split reductive groups ([duS6]).

3.4. TheLiealgebraof upper triangular matrices. We givein thissection
an example of a Lie algebra L with the property that the maps 6, : H — R
of Theorem 2.2 which we associated to the automorphism group of L are not
characters of the group H. Nonetheless it is still possible to calculate the resulting
integral with the encouraging corollary that the result still satisfies the functional
equation detailed in the Introduction.

Let U(Qp) denote the Lie algebra of al nilpotent upper triangular n x n
matrices over Qp and set £ = UJ(Qp)/7e+1U(Qp) for some 3 < c+1 < n.In
[Se] Sega gives a description of Autg, £/N; where Ny denotes the group of
| A-automorphisms. We aso need knowledge of the structure of Nj. It is possible
to give a general description of N; but here we content ourselves with a specific
example.

We consider the algebra £ = UY(Qp) of class 3. Let G, = Autg, £. In fact
for this example the description of Gp/Ny in [Se] is incorrect. We choose a
basis for £ given by the standard unit matrices g; for 1 < i < j < 4. Then
{u =@j+1|1=1,2,3} isaset of generatorsfor £ and {gj+i | 1 <j<4—i}isa
basis for the ith layer v L£/~i+1L. With respect to this basis we can represent G,
in upper triangular block form () 1 <i,j < 3 where the ith row of the block
matrix is the image of {gj+ | 1 <j < 4—i} under the action of G,. Let Dn(Qp)
denote the diagonal subgroup of GLm (Qp) and let J denote the * anti-diagonal”
m x m matrix asin [Se].
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ProposiTION 3.15. G, consists of all Qp-linear transformations o = («jj) €
GLe(Qp) 1 <i.j < 3satisfying

ur 0 O
an = | 0 p2 0 |-J3€D3(Qp) % (J3)
0 0 wus
Aun A
a = | A1 Axn | € M32(Qp)
Azr —Au
k
13 = *) € M31(Qp)

*

oz = (157 ) (-3 €DAQ) 1 2

a3 = (a1, @12) € M21(Qp)
asz = papzps € Qp
ajj = Ofor (i > j)

wheree € {1,—1} and + isa Z-polynomial map.
Proof. To prove this we consider the sets
wh = {X € L/72(L) | [W,X] € 7a(L)}
for some w = au; + azuy + aguz mod~2(L). Then

3ifw=0
2ifw#£0anday=0
1if ap #Z0.

dimw"

(Note that in the proof of Proposition 5 of [Se] a humber of cases are missing
from the analysis of dimw"’.) Suppose that a1 = (i) € GL3(Qp). Since the
dimensions of u- should be preserved under automorphisms of £ we have that
v12 = vz =0 and hence v,, Z 0. We now consider certain commutator identities
which yield the following relations on ;-

(1) [ug, [ug,u2]] = O implies vyvpo113 = 0

(2) [[uz, us],ug] = 0 implies varpor33 =0

(3) [[u1,Uz], uz] = O implies vi1vpor3 + vigv2eva = 0

(4) [up,[uz, u3]] = 0 implies va1roo103 + V33102121 = 0.
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These relations on Vjj together with the fact that v11v33 — v13v31 7/ 0 |mpIy that
either

a(Up) = piyimody(L) fori=1,2,3
or
a(U) = piug_j mod~2(L) fori=1,2,3.
It is an easy exercise to check that in fact
o(up) = iy fori=1,2,3
and
o(Up) = piug_j fori=1,2,3
do determine automorphisms of £ and that a2 and aszz have the description
given in the statement of our proposition. (Consider for example conjugation (in

Ma4(Qp)) by matrices in D4(Qp) together with the map w — —'(JswJs).) Hence
we can assume now that « acts trivially on £/~2(L). Suppose that

a(u) = U + Aiz€13 + Aiz€4 mod3(L)
then since [ug, uz] = 0 we have that
[aug, auz] = (A1 + Az2)es =0

i.e. A\11 = —As32. Thisis the only relation forced on N; and it is then a straight-
forward exercise to check that all such maps define automorphisms of L. O

We can generalize this approach to realize a description of

Autg, U2(Qp)/7e+1UA(Qp).
The key is to consider the sets
w0 = {x € L/me(L) | [W,X] € ni2(L)}
forl=1,...,c— 1L
The reductive part Hp of the connected component of G, in our present

example is then just the torus D3(Qp). We consider now the maps ¢; : H, — R
for i = 1,2 defined in Theorem 2.2.
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LemmA 3.16. Let h = (aj5) € Hp. Then

01() = |pal ?|ua| ®lusl 2 - (min{|pa| Y usl 1)

O2(h) = |papiapal~>.
Proof. Recall the definition of 6;(h):
0i(h) = iy N, ({00 € Ni/Nist | mimi(h) € M33_i(Zp)})

where ni7i(h) = o}y - @istivr @d nj = (ai’j). (Note that since the map + in
Proposition 3.15 is defined over Z if a3 - azz € M31(Zp) then abg - a3 €

M2.1(Zp).)
If i =1 then
A A papz O
A1 Az < 0 > € M32(Zp)
H2/43
Azl —An
if and only if
V(A1) > —V(uluz) fori=2,3
V(Ai2) > —V(uzus) fori=1,2
V(Aw) > max{—v(u1p2), —V(k2p3)}-
Hence
— -2 -2 : ~1 ~1
01(h) = |papa| “|p2ps| = - (min{|pape| =, |paps] 1)
The calculation for 6,(h) is straightforward. O

Hence 0, : Hp — R is not a character of Hp. Nonetheless we can till
calculate ¢{\,(s) where L is the lattice spanned by the basis {g; | 1 <i <] < 4}.
The Assumptions 2.1-2.3 are satisfied so we can apply Theorem 2.2

a9 = [ et pa(h) det o) e pa(h) s ez ()
p

where pj(h) = «jj. Then

& = | P P e
(11,p2,u3)E(ZP)3

- (min{|pa| 7 [pa| M dpadpadps
B (1 + p—3s+5)
T a- p—45t8)(1 — p3s*5)(1 — p-6st1)
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where dy; is the Haar measure on the multiplicative group Qg normalized such
that 1ii(Z5) = 1. (Note that 4u(p"Zp \ pP™Z) = pi(p"Z5) = 1)
Hence (ﬁp(s) satisfies the functional equation

Cli\,p(s) | pap—l - _ pf 1OS+19CIZ\’p(S) .

Calculations of some higher dimensional examples hint at the fact that we till
have a functional equation despite the fact that the 6; are not in general characters.

4. Zeta functions for algebraic groups over a global number field. In
this section we consider a linear algebraic group G defined over afield K, where
K is afinite extension of Q, together with a K-rational representation

p:G— GLp.

For each prime p of K recall from Definition 0.3 (ii) that
Zaps(9 = [ 1 detp(@)3nc(a
p

where G, = p~1(p(G(Kp)) NMn(dk,)). We will prove that for almost all primes
p of K, G(K,) and the representation p : G(K,) — GLy, (K,) satisfy the Assump-
tions 2.1, 2.2 and 2.3 of section 2. This implies then that for ailmost all primes
p we can replace Zg ,,(s) by an integral over the connected component of the
reductive part of G as detailed in Theorem 2.2.

We shall keep track in a note at the end of each lemma which primes we
are excluding. We begin with proving that Assumption .1 holds for almost all
primes p.

Lemma 4.1. For almost all primes p, G(Jk, ) maps onto G(K,)/Go(K,) where
Gy isthe connected component of G.

Proof. There exists afinite K-algebraic group F such that G(K’) = Go(K')F(K”)
for any field extension K’ of K (see [BS] Lemma 5.11). There exists a finite ex-
tension L of K such that F(L") = F(L) for any L’ > L. Let (&;) € F(L) then, for
amost al primes p of K, either g ¢ K, or a; € ¥,. Since F(L) is finite, for
amost all primes p,

This proves the lemma. O

Note. We exclude at this stage primes p for which an element of the finite
group F(K,) is not integral.
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The following fact that choosing an equivalent K-rational representation for
G does not affect Zg ,,(s) for amost all primes p will be important here and
in §6.

LeEmmA 4.2. Let o’ : G — GL,, be an equivalent K-rational representation of
p; i.e, thereexists A € GLp, (K) such that p/(x) = Ap(X)A~L for all x € G(K). Then
for almost all primes p of K

Z6,p,p(8) = ZG,pp(9)-

Proof. The integrand | det p(g)|° is independent of a choice of equivalent
representation. All we have to worry about is the subset G; over which we
are integrating. For amost al primes p, A € GL(Jk,). In this situation if
p(9) € Mn(dk,) then

p'(9) = Ap(Q)A™ € AMn(dk,)A™" = Mn(dk,)

and conversely. Hence Zg , ,(S) = Zg,p,p(9). m]
Note. Here we are excluding primes p for which A or A1 ¢ Mn(9k,)-

We show next that we can choose an equivalent representation satisfying
Assumption 2.2. Recall that N(K) is the unipotent radical of G(K) and H(K) is
the connected component of the reductive part of G(K).

LemmA 4.3. There exists an equivalent K-rational representation p’ of p such
that p’ decomposes into block form where p'|1 k) is block diagonal and p'|n) IS
unitriangular.

Proof. We are reguired to decompose V = K" into a direct sum V = U; &
-+- @ U of H(K)-stable subspaces U; such that N(K) acts trivialy on V;/Vi+1
whereV, =Ui®---@®U.. Let 0 #v € V be afixed point of the action of N(K) on
V, the existence of which is guaranteed by Lie-Kolchin. Set U¢ = vE®). Then U,
is H(K)-stable and N(K) acts trivially on U;. There exists an H-stable splitting
V =W & U;. Now proceed by induction. O

Assumption 2.3 will follow as a corollary of the following result:

Lemma 4.4, Let K bebeafield of characteristic zeroand G; and G, < GL, (K)
be K-linear algebraic groups. Suppose

p:61— G
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isa K-rational epimorphism with ker ¢ unipotent. Then there exists a polynomial
section defined over K

PGy — Gy

such that ¢ o ¢ =id.

Proof. We assumefirst that G1 and G, are both unipotent. Denote by £(G;) the
Lie algebra of Gj. The homomorphism L(y) =log|g, o ¢ o exp|z(c,) : £(G1) —
L(Gy) splitsby alinear transformation ¢y : £(G2) — L(G1). Now ¢ = exp|z(c,)©
110log|g, defines a section with the property that ot = id. Since G; is unipotent,
exp|z(c,) and log|g, are both polynomia maps defined over K and hence ¢ is a
polynomial section defined over K.

In the general case we write G; = N; x H; as a semi-direct product of its
unipotent radical N; and its reductive part H;. We can choose H; such that ¢|n,
induces an isomorphism from Hy to Hy. Let 41 |n, = =1, which, asamorphism
of algebraic groups, is defined by polynomials over K. Let 4> : N, — N be the
polynomial section guaranteed by the first part of this proof. We define ¢ : Go —
G by ¥(n2hg) = 1p2(n2)ya(h2). Then ¢ is a polynomial section defined over K
with p o 1) =id. O

CoroLLARY 4.5. For almost all primesp of K, if g € (G(K,)/Ni(K,))" (where
the integral points are taken with respect to the representation ¢; of G(K,)/Ni(K;)
defined in §2) then there exists g € G(K,,)* such that gN;(K,) = @.

Proof. Let ¢ : p(G(K)) — i(G(K)/Ni(K)) be the natural map with ker-
nel the unipotent group p(N;i(K)). By the previous lemma there exists a poly-
nomial section defined over K, ¢ : ¢i(G(K)/Ni(K)) — p(G(K)) such that if
g € ¢i(G(K)/Ni(K)) and g = #(T) then § = (g). This polynomial section ex-
tends for each prime p to a section ¢ : ¢i(G(K,)/Ni(Kp)) — p(G(Ky)). For
amost al primes p this polynomia section is defined over ¥k, and hence if
9 € 9i(G(Ky)/Ni(Kp)) N Mn(ik) then g = (@) € p(G(Kp)) N Mn(k). This
proves the corollary. O

Note. The primes excluded at this stage are those for which the coefficients
of the polynomials defining the section ¢ are not integers in the localization K.

Lemmas 4.1, 4.3 and Corallary 4.5 together with the results of section 2 then
give us the following:

CorOLLARY 4.6. Let G be a K-algebraic group and

p.G— GL,
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a K-rational representation where K is a finite extension of Q. Then for almost all
primesp,

c—1
(4.1) Zapp(9 = | 1deth* [T 6,(pan
P i=1

where H} = p(p(H(Kp)) N Mn(dk,)) and ¢; are the functions on H(K,) defined
in section 2.

In the next section we turn to the problem of evaluating an integral (4.1)
for a connected reductive algebraic group H. We shall have to impose further
conditions on the reductive group H to make this calculation.

5. An explicit finite form and a functional equation. Let G be a con-
nected reductive linear algebraic group defined over k where k is a finite exten-
sion of Qp. Denote by g the order of the residue field of k. Let p : G — GL, bea
faithful k-rational representation. In §2 we were left having to consider integrals
of the form Zg , 56(S) as defined in Definition 0.4 (i). At present we can only
deal withthecasethat 6 : H — R isacharacter on H. Note that, by Theorem 2.3,
this is the case when G is the automorphism group associated with a class two
nilpotent group or a nilpotent group free in some variety. We therefore restrict
our analysis to the following integrals:

Zpnn(® = [ 19(@F15(0)ue(©)

where 1, 8> € Hom (G, G,,) are two characters on G. As in section 2 we shall
introduce various assumptions on our reductive group such that we can apply
the methodology of Igusa to calculate Zg , 5, 5,(S). Our setting requires a slight
generalization of lgusa's calculation. Unlike section 4 it will not be the case
that all these assumptions are true for almost all primes when we start with
an agebraic group defined over a global number field. We shall make some
comments in this direction and hope in a future paper to remove the assumptions
we need at the moment to make Igusa’s calculation. But we content ourselvesin
this paper with defining a class of algebraic groups for which an explicit finite
form for Zg , 3,,3,(S) exists.

We shall be reasonably sparing with details since these can be found in Igusa’'s
paper [I].

We can write G = SG’ where Sis a central k-torus and G, the derived group,
is a connected semisimple algebraic group and SN G’ = um where pm denotes
the group of m-th roots of unity.
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Assumption 5.1. S= Gy, i.e.,, the maximal central torus of G isone-dimensional.

This is the first nontrivia case since if Sis finite then Zg , 3, 3,(S) is con-
stant. Note that this assumption followed from Igusa's assumption that G is an
irreducible subgroup of GL, (not contained in SL,,). However we shall want to
consider non-irreducible representations p : G — GL,,.

Under this assumption, Hom (G, Gy,)) is generated by a single element f sat-
isfying f(7) = 7™ for every 7 € Sand ker f = G’ where e € {—1,1}. Later we
shall choose a generator, i.e. choose ¢, to make our calculation smoother. We can
write the characters 5 = ffi for some rj € Z and hence we have

LemmAa 5.1.

ZG,p,31,5.(S) = Zg pf(r1S+12)

where Zg ¢ (5) = [+ If(9)1%16(9).-

So under Assumption 5.1 we can focus our attention on Zg ,¢(S).

The key to calculating Zg £ (S) is the p-adic Bruhat decomposition and the
expression for the measure of double cosets in this decomposition as the distance
between chambers in the associated building. To apply this decomposition we
need at present to make the following assumption:

Assumption 5.2. The maximal torus T splits over k.

In this situation we call G k-split. (Note that, following the work of Bruhat
and Tits, the notion of a p-adic Bruhat decomposition exists for a non-split group
G which should alow us, we hope, to carry out the following calculation in this
setting eventually.) T is unique up to conjugation in G(k) and hence contains S,
Since T splits over k it is k-isomorphic to (Gm)d™(™M. Let ¢ : T — (Gpy)d™T
denote such an isomorphism.

When G is k-split, the nontrivial minimal closed unipotent subgroups of G
normalized by T are isomorphic to G,. The conjugation action of T is mapped
by this isomorphism to an action of T on G4 of the form

X — a(t)x

where « € Hom (T, G,). The elements o € Hom(T, Gy,) thus obtained are al
distinct nonzero and finite in number. They form a reduced root system @ in the
subspace of V = Hom (T, G) ®z R that they generate. The elements of ® are
caled the roots of G relativeto T. For each o € @, let U,, be the corresponding
minimal unipotent subgroup and 6, : G — U, denote a k-isomorphism such
that

0, (Ut =0, ((t)u).
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Let 7w denote a fixed uniformizing parameter for . We then make the following:

Assumption 5.3. The groups G and T together with the isomorphisms ¢ :
T — (Gm)¥™M and 6, : Ga — U, for each o € ® have good reduction mod .
In this setting we shall say (after Igusa) that G has very good reduction mod .

We refer to [B] and [PR] § 3.3 for an explanation of what it means for a
group and a homomorphism of groups to have good reduction. This assumption,
which is perhaps the most technical of our assumptions, is satisfied for almost
al primes p if we consider an algebraic group G defined over a globa number
field K and take its K,-points G(K;) (see Proposition 3.20 [PR]).

The finite Weyl group W of G relative to T is defined as W = N(k)/T(k)
where N denotes the normalizer of T in G. The Weyl group W is isomorphic to
the Weyl group of the root system ®. One conseguence of Assumption 5.3 is
that we can choose coset representatives gy, for every w in W from N(¢). An
explanation of this can be found in [I] 11.2.

Let = denote Hom (G, T) and V* = =Z®z R. Then = isdua to Hom (T, G)
under the natural pairing

Hom(T,Gp) x Hom (G, T) — Z

(@, 8) = (@, §)

where a(£(7)) = {9 for every 7 in Gp. The Weyl group W can then be
embedded in GL (V*) since it acts on the coroots ®* of ® which can be identified
with elements of V* under this pairing. We now extend W to a group W of affine
linear transformations of V* as follows: For each £ € = define t¢(x) = x+ £ for
each x € V* and set

W =W.{te|¢ € =},

the semi-direct product of W and trandations by =. The law of multiplication in
W is defined by

(Wate,)(Wate,) = wWawate Where € = w, (&) + &a.

W is caled the affine Weyl group of G relative to T. It is isomorphic to the
group N(k)/T(9) via the map wte — gwé(m)T (). (Note that the coroots ®*
span V* if and only if G is semisimple; hence W is in genera larger than the
affine Weyl group of the root system ®. Under Assumption 5.1 the quotient of
W by the affine Weyl group of ® isisomorphic to Z.)

Chooseabasis®g = {ay,...,q} for ® sothat ®* and @, the set of positive
and negative roots, are defined. Recall that the finite Weyl group W acts simply
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transitively on the set of all bases for ®. The functional equation that follows
from Igusa’s explicit form for Zg ,(s) depends on the freedom here to choose
a different basis for ®. This choice of basis fixes a fundamenta cell C in V*
defined by

C={xeV*0< (a,x) < Llforal acd}.
Define U* = ], cq+ 0a(Ga) and U~ similarly. Then, setting
B =U () T()U ™ (),

B isan Iwahori subgroup and we have the following p-adic Bruhat decomposition
of G(k):

ProprosiTion 5.2. (i) G(k) can bewritten as a digjoint union of double cosets of
B asfollows:

6l = U Baut(ms;

Wte €W

and G(Y) = | J BowB.

weW
(ii) Define the function A(wt,) by

A(Wte)

card(Bgwé(m)B/B)
i (Bawé(7)B) / a(B),

q

theindex of B in the double coset Bg&(m)B. Then for each ¢ € = thereisa unique
element we € W such that the function w — A(wt¢) on W attains its minimum at
wg with value

(5.1) AWete) = D7 (@, &) — A(we).

aew; H(®*)
The element w, has the property that for all w € W
(5.2 )\(VWVEtg) = A(w) + )\(Wgté‘).
The formulas (5.1) and (5.2) for A(wt¢), established by Iwahori and Mat-
sumoto [IwM], can be understood from the interpretation of A(wt;) as the number

of hyperplanesin V* separating the fundamental cell C from itsimage o(C) under
the action of o = wt; € W. For more details we refer the reader to [IwM] and
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[1]. The expression for A(wt¢) and the decomposition of G(k) are crucial to the
calculation of Zg ,¢(9).

Since B < G(¢%) and gy € N(y), then Bgwé(r)B C G' if and only if
p(§(m)) € Mn (D). Set

=" ={¢ e = | p(&(n)) € Mn(9)}
and for eachw e W
EW:{§EE|W£=W}.

Then we can make the first inroads on the calculation of Zg ,¢(S). Note that since
BowB < G(%), the integrand |f (g)|® is constant on Bgy&(7)B and takes the value

I (&(m)) 5. So
pB)- S ST QMO (g(m)) [

weW ge=*

pB)- >0 3T ST QWIlE (¢()) [

W EeWWEW £e=,

(1B - Y- ) (3 Y @Mt (g(m)I°)

weW weW ¢e=

ZG,p,f (S)

where =}, = Z,N=". But 1(B)- X ew I'™ = 116(G(W)) = 1 by our normalization
of the Haar measure ug. Hence

Zopi (9= > D M (¢(n)) "

weW e=y,

By Proposition 5.2 (ii), for £ € =,

AWte) = D (. 8) — W)
aew-1(@*)
= D (o, W) — Aw)
aedt

since (,) isinvariant under the action of W. We set
|
(5.3) H o= H ozia"

acdt i=1

whereay, . .., a are positiveintegers depending only on ®. Then, since | f (w(¢)())| =
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| f (gwé(mant)| = If (£(x))], we have

33 Sacor @A £ () () o

(5.4) 26,01 (9)

weW ge=y,
= Z q*A(W) Z qa1<a1.£>+---+a|<a|,$>|f(g(ﬂ)”s.
wew EEW=y,

We turn now to an analysis of the representation p in order to understand the
set w=;,. Since G isareductive group, the representation p is completely reducible
i.e., it is equivalent over GL, (k) to a direct sum of irreducible representations.
Our Assumption 5.2 implies that we can choose an equivalent representation of
p such that the maximal k-split torus T consists of all diagonal matrices in G.
We shall in fact suppose that p is such an equivalent representation:

Assumption 5.4. There exist k-rational irreducible representations p; : G —
GLn, (i=1,...,r)suchthat p(g) isthediagonal block matrix with p1(g), ..., pr(9)
on the diagonal for each g € G(K)

p1(9) 0
p(9) = ,
0 pr(9)

and the maximal k-split torus p(T(K)) consists of all diagonal matricesin p(G(K)).

Note that if we begin with a representation p over K a finite extension of Q
then there exists an equivalent representation p’ over GL, (K) such that o’ satisfies
Assumption 5.4. But by Lemma 4.2, for aimost all primes p of K, Zg v ,(s) =
Zg p(S). Hence Assumption 5.4 can be dropped in the global setting by excluding
finitely many primes.

We are interested in knowing when p(t) = p(&(w)) € p(T(K)) " Mn(¥). Under
our Assumption 5.4, p(T(K)) is diagonal. The diagona entries of t € T(k) are
given by the weights wijj € Hom(T,Gm) (j = 1,...,n;) of the representations
pi. If we denote by wi € Hom(T, Gp,) the dominant weight of the irreducible
representation g — pi(g)~1, the contragredient representation of pi, then there
exist I-tuples c(j,i) = (ca(j,i),-..,c(j,i)) € N' (j=1,...,n) such that

L
wij®) = wi 1) - TT o).

k=1

For each i there exists a unique j such that c(j,i) = (0,...,0). (For a reference
see [S] VIl and VIII) For each i = 1,...,r there exists m € Z such that
wi(T)™="f(7)~™ for every 7 € S. We shall make afinal assumption (Assumption
5.5) that will in fact imply that my > Ofor all i =1,...,r. Since the representation
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p is faithful, the greatest common divisor of my,..., m,, which we denote by
(M, ...,m), isequa to 1. Choose Ay,..., A\r € Z suchthat A\qpy+-- -+ m, = 1.

Recall that {a1,...,q '} was our choice of basis for the root system ®. We
set ap = f|T where f is the generator we have chosen for Hom (G, G,). Then
ap, a1, . . ., o form a set of free generators for Hom (Q, G,,) where Q = T/SNG’
and SNG' ¥ um, the group of mth roots of unity. This follows from the fact that

| |
ﬂkerai =keraoﬂﬂkel’ai =G nSs
i=0 i=1

Let &o,&1, - - -, & denote the elements of Hom (G, Q) satisfying («, &) = 6;; for
0<i,j <Ithen {&,&1,...,&} isaset of free generators of Hom (G, Q).

Foreachi=1,...,r, w™ € Hom(Q, Gn) and hence can be written uniquely
as a Z-linear combination of the basis ag,...,q. For 7 € S, w(7) = ag”‘(f)
and oj(7) =1 for 1 <j <. Hence

| .
(5.5) wim - aami . H ajbj(l)
=1

for some by(i),...,b@i) € Z. Infact bj(i) > O0Ofor L <j<land1 <i <r
since wj is a dominant weight. As Igusa points out, this can be deduced from
the fact that all entries of the Cartan matrix of a complex simple Lie algebra are
positive. Note however that in our setting bj(i) can be zero. This corresponds to
those nonfaithful representations p;. For such a representation {oy|bj(i) = 0} isa
basis for a root system of the kernel of p;.

LEMMA 5.3. = = Hom (G, T) = £J¢ - H}:l (fglbj(1)+m+/\rbj(r)fj)z-

Proof. By duality = is a subgroup of Hom (G, Q) with Z/mZ as the factor
group. Each element ¢ of Hom (G, Q) can be expressed uniquely as & = H}:o §je]
for some ey, e1,...,8 € Z. Then ¢ isin = if and only if («,&) € Z for al
a € Hom(T,Gp). Set w = wyl...w, where \1,...,\; were chosen above.
Then SN kerw = (-, keroy Nkerw = 1. Hence Hom (T, Gyy,) is generated by
ai, ..., and w. Since (,&) € Z fori =1,...,r, £ isin = if and only if
(w,€) € Z. Thisis the case if and only if

|
—(Atmy + -+ A my)eg + Z(/\lbj(l) +---+ \bj(r))g = Omodm.
=1

Since A\{hy + - - - + Aymy = 1 the lemma follows. O



LOCAL ZETA FUNCTIONS OF NILPOTENT GROUPS 79

We definecy,...,q € Z by
G = Aby(D) + - - + Aby(r).

Let C denote the positive Weyl chamber relative to the choice of basis ®g
defined by

C={xeV*0< (a,x) foral o € "}

and C its closure in V*. Igusa established previously (see [I] 11.3) that the set
w=; has the following description:

(5.6) W=y, = {6 € 2" NCl{w, &) > 0if a5 € WD)}

The final piece in the jigsaw is to analyze the set =+ N C. By definition of C
we have

| -
=nC=€f% - T[N
=1

Lemma 5.4. Let ¢ €e =N C. Then¢ € = N Cifand only if (wt,¢) > 0 for
i=1,...,r.

Proof. The element ¢ = £ HJ 1(5 §J)q of = iscontained in =* if and only
if wik(&(m)) e Ik, 1.6 {(wik, &) >0, foreachi=1,...,randk=1,...,n;. Since,
for each i = W w; —1 =, for some k, one direction of the lemma is clear.
Supposethenthat< L&y >0fori=1,...,r. Then, foreachi=1,...,r and
k=1,...,

(wik, €) Zq(k g + (w 1,€) >0

j=1

since c(k,i) € N' and g > 0for 1 <j < I. This completes the proof of the
lemma. m]

This lemma shows why it is the dominant weight of the contragredient rep-
resentation which dictates whether ¢ € =* N C.

To complete the description of = N C in a similar fashion to Igusa’s cal-
culation we need to make one final assumption concerning the irreducible rep-
resentations p;j. To state this assumption we extend from semisimple groups to
reductive groups the definition of what it means for a weight w1 to dominate a
weight w».
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Definition 5.5. Let w1 and wo be weights of our reductive algebraic group
G. With respect to some choice of generator f for Hom (G, G,,) and denoting
ap = f|r we can write

I .
m_ —m 10)
Wi =ag - | Iaj .
=1

We say that wq dominates w, if either
(1) mmp > 0and bj(1)/m > by(2)/mp for eachj=1,...,1; or

(20 m =m =0 and bj(1) > by(2) for each j = 1,...,I. If the w; are
dominant weights of representations p;, we say that p; dominates p,.

Note that if m = mp = 0 then wj isin fact a weight of the semisimple group
G’ and our definition is the same as the definiton for semisimple groups.
We then make the following:

Assumption 5.5. There exists ip € {1,...,r} such that {p;_* dominates 'p; *
foreachi=1,...,r. Without loss of generality we may suppose that ip = 1.

Note that since my # 0 for some i, this assumption implies that my # O for all
i and without loss of generality we can choose a generator f for Hom (G, Gp,)
such that m; > O for all i.

In fact Assumption 5.5 has the following equivalent reformulation:

Lemma 5.6. (o7t dominates 'yt for each i = 1,...,r if and only if, for all
€€ =nC,if (wt,€) > 0then (w 1,¢) > 0forali=1,...,r.

Proof. Suppose that {p; ! dominates {p; ! for eachi=1,...,r. Let
|
e=® - J[(&Gg% e=nC
j=1

and suppose that

=1

! |
(Wit €)=1/m (ml (meo + chq) - ij(l)ej> > 0.
j=1

Then (mep+3"j4 Gg) > iy (0(1)/my)g sincemy > 0. But by(1)/my > by(i)/m
fordli=1,...,r and mj > O hence

| |
(W€ =1/m (m (me0+chq) —ij(i)q) >0

=1 =1

forali=1,...,r.
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Suppose conversely that for al ¢ € =N T if (wr,€) > 0 then (w,¢) >0
forali=1,...,r.Leté=¢ M If

(wrt,€) = 1/m(my( — mm)) = —mym > 0
then
(W, €) = 1/m(m(— mm)) = —n¢ > 0.

If m =0thenm =0forali=1,...,r but thisis not the case. If m; > 0
then mj > 0. In fact my > 0 since otherwise by (i) 7 O for some jo and then
setting g, = m, e > b;(1)/m — ¢, and g = O otherwise, we would have
(it €) > 0but (wt,¢) < 0. A similar argument works for my < 0. Finaly for
eachj=1,...,l, choose g = mym and e = bj(1) — ¢; and & = O otherwise. Then

(wit,€) = 1/m(my(m(bj(1) — gj) + gmym) — b(1)mym) = 0.

Hence our assumption implies that

(Wt &) = 1/m(my(m( (1) — g) + gmem) — by(i)mym)

1/m(mymb; (1) — by(i)mym) > O.

Since mym, > 0, we have that by(1)/my > by(i)/m for dl i =1,...,r i.e, that
tp7* dominates 'yt for each i = 1,...,r. This completes the proof. O

The following corollary of this result describes a natural setting in which
Assumption 5.5 is true. Note that the hypothesis of the lemma is true for the
example of section 3.1 (see the proof of Lemma 3.2 (3)).

LemmA 5.7. Suppose that p; has the property: (x) for all g € G, p1(Q) €
My, (¥k) implies that pi(g) € Mp, (J) for eachi =1,...,r. Then p; dominates p;
foreachi=1,...,r.

Proof. Let ¢ € =N C then &(r) € T. Suppose that (wit,&) > 0. Then by
the proof of Lemma 5.4, (wyj,&) > 0, for each j = 1,...,ny. But this means that
wyj(§(m)) € O foreachj=1,...,n;, i.e that p1({(m)) € M, (Y«). Hence property
(*) implies that pi({(7)) € My (Y), i.e. that (wij,&) > 0, for each j = 1,...,n;.
In particular (w; %, &) > 0. By Lemma 5.6 this implies that {p; * dominates {p; *
foreachi=1,...,r. O
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Under Assumption 5.5 we can then prove
LemmA 5.8.
|

| .
=0T = (g™ [[ (96)1g 2 Ofor 1<) <l and meo > 3 (b(1)/m—)a).
j=1 =

Proof. An element ¢ = £ H}:l (égjgj)‘% of = is contained in =* if and
only if wik(&(m)) € Yk, i.e (wik,&) >0, foreachi=1,...,randk=1,...,n.
But by Lemma 5.4 and 5.6, under Assumption 5.5 thisis the case if and only if
(wr%,€) >0, i.e. meg > Yo (b(1)/my — 6))gy. O

We can finally complete our explicit finite form for Zg ¢ (s). Since |f (£(7))| =
q(*0€) for ¢ € =, we have by (5.4), (5.6) and Lemma 5.8

ZGyp‘f (S) = Z q_)\(w) Z q—meoS+(a1—cls)e1+...+(al _CIS)Q
wew (eo,....8)€l

where

- (€0,...,8) € Z | mep > Y iy (B(1)/mu — G)g, g > L if o € W(P)
and g > 0 otherwise for j =1,.. ., '

Note that, since (w; 1,€) € Z, 1/mY_j-; (bj(1)/my — ¢)g € Z. Hence

(Cwew A [Ty o) o~ AO/M2)
(L—q™) [Ty (1 — g~ ®@/m3)

ZG,p,f (S) =

provided that Re(s) > max{0,aym/bj(1)(j =1,...,1)}.

Igusa showed that by choosing a different basis for the root system ® we
can redize a functional equation that Zg ,¢(S) satisfies. We prefer to explain this
functional equation via a change of variable in this expression. We can write for
any wop € W

(Xwew q Ao Haj cwwo(®-) o @ (1)/m1)s)
(1— ™) [Ty (1 — &~ O@/mos)

ZG,p,f (S) =

We now choose wy to be the unique element of W permuting ®* and &
Then using the fact that A(Wwp) + A\(W) = card (®*) and denoting the above two
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expressions for the same Zg () by Z* and Z~ we get

Z*|qogr = (= D)@z,
This is our form of the functional eguation established by Igusa.
We draw together the results of this section and section 2 in the following:

THeEoRrREM 5.9. Let G bealinear algebraic group defined over k, afiniteextension
of Qpand p : G — GL,, be a faithful k-rational representation. Let H denote the
connected component of the reductive part of G. Suppose that G and p satisfy
Assumptions 2.1, 2.2 and 2.3and H and p| satisfy Assumptions 5.1 to 5.5 and that
thefunctions 6; : H — R defined in §2 are characterson H. Then

)

( ZWGW q—)\(W) H GW((D*) qaj _(bj (1)/"\1)(I'15+I’2))
Y
(1 - q_m(rls+r2)) HJ!Zl (1 _ qai_(bj (1)/m1)(r15+,—2))

ZG,p(S) =

provided that Re(s) > max{—r2/r1,1/r1(am/bj(1) —r2)}.
(2) Zg,»(s) satisfies a functional equation:

ZG,p(S)|q4>q—1 =(- 1)I+1qfm(r15+r2)+card(qa+)ZG'p(S).

We recall briefly the interpretation of the numerical datam,r; andrs, ag, ..., a,
b1(2), ..., (1) and my:

m. Let S denote the one-dimensional maximal central torus of H and H’
the derived group of H, then H' N S= pupm, the group of mth roots of unity.

rpandry. Let f denote the generator of Hom (G, Gr) and 6i(i = 1,...,c—1)
be the functions on H detailed in section 2 (assumed to be characters), then
f'1(h) = | det p(h)| and f2(h) = [T 6i(h)| .

aj,...,a. Let{a1,...,q} denote a basis for the root system @ of H
relative to a maximal k-split torus T, then [[,cor @ = a3t ..o,

b1(2),...,b()andmy. p|n decomposes as a direct sum of irreducible rep-
resentations p1, . . ., pr where p1 dominates p», . . ., pr. Let wy denote the dominant

. ! b
weight of tp~1 then W' = ag™ - H}zl aj’(l) where ag = f|r.

6. Functional equations and uniformity for local zeta functions of alge-
braic groups. We return in this section to the perspective introduced in §4. Let
G be a linear algebraic group defined over a number field K and fix a faithful
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K-rational representation

As a corollary to the previous section, under certain conditions we shall deduce
for amost al primes p of K an explicit finite form and a functional equation
for the zeta functions Zg ,,,(S). A corollary of this explicit finite form will be a
certain uniformity in Zg ,, ,(S) as p ranges over all primes of K.

In particular, when G = Autl’ and K = Q for some torsion-free, finitely
generated nilpotent group I' we can deduce corresponding results for the local
zeta functions defined in the Introduction for the nilpotent group I'.

THEOREM 6.1. Let Gbealinear algebraic group defined over K afiniteextension
of Qand p : G — GL, be a faithful K-rational representation. Let H be the
connected component of the reductive part of G. Suppose that (i) the functions; :
H — R (definedin§2) arecharactersof H; (ii) H isK-split; (iii) themaximal central
torus Sof H is one-dimensional; and (iv) there exists an irreducible component p;
of p which dominates the remaining irreducible components. Then for almost all
primesp of K:

D)

(X wew qi/\(w) Hai ew(®-) Qs —(by (1)/m1)(r15+r2))
(1 — q*m(r15+f2)) Hj!=1 (1 _ qaj*(bj (1)/m1)(r15+r2))

ZGpp(S) =

provided that Re(s) > max{—rz/r1,1/r1(gjm/bj(1) — rz)} where the numeri-
cal datam, rq, and rp,ay, . ..,a,b1(1),...,b (1) and my, have the interpretation
detailed at the end of §5 and q isthe order of the residue field of K,,; and

(2) Zg,p,p(s) satisfies a functional equation:

ZG,p,p(S)|q—>q—1 — (_ 1)|+1qu(l’15+r2)+cal‘d(cD+)ZGyp’p(S).

Proof. By Corollary 4.6 for ailmost all primesyp of K we can express Zg ,, ,(S)
as an integral (4.1) with respect to the reductive group H. We are required to
show that, for almost al primes, H and p satisfy Assumptions 5.3 and 5.4.

By Lemma 4.2 for any equivalent representation p’ of p, Zg  4(S) = Zg,p,p(9)
for almost al primes p. Since H is a reductive group, the representation p is
completely reducible, i.e., equivalent over GL,, (K) to a direct sum of irreducible
representations p; called the irreducible components of p. (The irreducible com-
ponents are uniquely determined up to equivalence. Note that the concept of a
representation p; dominating a representation p» isinvariant under taking equiva-
lent representations so Assumption (iv) of our Theorem is well-defined.) Since T
splits over K, pi(T(K)) is diagonalizable over GL,, (K) so we can choose pj with
pi (T(K)) diagonal. Hence by taking an equivalent representation we can arrange
that, for almost all primes p, Assumption 5.4 is true.



LOCAL ZETA FUNCTIONS OF NILPOTENT GROUPS 85

If m, denotes a fixed uniformizing parameter for 9, then, for amost all
primes p, H(K,) has very good reduction mod 7, (see for example Proposi-
tion 3.20 [PR]).

Since we are taking Assumptions 5.1, 5.2 and 5.5 as hypotheses for our
Theorem we can apply Theorem 5.9 to yield statements (1) and (2) above for
almost all primes p. m|

Note that the numerical data are independent of the prime p. (A trap for the
unwary: mis not the order of the group H'(K,) N S(K,), which depends on p, but
the order of the group H'(K,) N S(K,), (where K, = C is the algebraic closure of
K,) which does not depend on p). We thus have the following uniformity result:

CoroLLARY 6.2. Suppose that G and p satisfy the hypothesis of Theorem 6.1.
Then there exists a rational function W(X,Y) € Q(X,Y) such that for almost all
primes p of K

ZG,pp(9) = W(G,07°),
i.e. Zg , isuniversal inp.

It would be desirable to remove the hypothesis made on the reductive group
in Theorem 6.1—in particular, that H be K-split. We can however aready extend
Theorem 6.1 to a class of non-split groups—namely to groups which are the
restriction of scalars of a split group over a larger field.

Restriction of scalars for abstract algebraic varieties was defined by Well
[W] and the definition reproduced in the languages of schemesin [BS] §2.8. We
follow the construction in [Se] and [PR] §2.1.2 for the special case of an algebraic
matrix group since we also want to keep track of restricting the representation
p . G — GLy. ldentify G via p with its image as an algebraic subgroup of GL,.
Let L be afinite extension of K of degree d where d|n. The construction depends
on a choice of K-basis £ for L. We choose £ to be an integral basis. In this
way we will ensure that integral matrices restrict to integral matrices. For any
extension field E of K we take R = L ® E to be the E-algebra on the basis £
with the same structure constants as the K-algebra L. R acts by multiplication on
itself as an E-algebra and hence we can identify R with an E-subalgebra Cg of
Mg(E), the E-linear transformations of R.

Let G be a L-agebraic subgroup of GLy, where m=n/d. For any extension
field Ly of K, G(L1) isthe set of all matrices x in GL, (L1) which satisfy certain
polynomial equations Pj(X11, X12, - - -, Xmm) =0 (I € A).

For any extension field E of K, define R kG (E) to be the set of matrices
in Mp(E) which can be written as m x m matrices whose entries are themselves
matrices belonging to Cg < My(E) and which, considered as m x m matrices,
satisfy the equations defining G. Since Cg is defined by polynomials over K, and
the equations P, = 0 force G to be a subgroup of GLm, R k¥ is a K-agebraic



86 MARCUS P. F. DU SAUTOY AND ALEXANDER LUBOTZKY

subgroup of GL caled the restriction of scalars of G from L to K. The group
R /kG(E) may be identified with the group G(R) where R=L @« E.
Let Je be the ring of integers of an extension field E.

LEMMA 6.3. Rk G(E) NMa(P€) = G(R) N Mm(91 @y J€) whereR = Loy E.

Proof. It suffices to prove that
Ce N My(Jg) = I Qg JE.

Let £ = {ey,...,e&} be the integra basis for L over K. Then J. ®y, Y =
Ve-€1D- - -DUE-€. Sinceg-g € I, multiplication by an element x € Y. ®y, Je is
represented with respect to the basis £ by amatrix in Mq(Jg). Hence ¥ ®y, Y C
CeNMy(Jg). Conversely amatrix u € Cg represents multiplication by the element
1.u. There exist ay,...,aq € Y with the property that 1 = a;e; + - - - + agey. If
U= (Uj) € Ma(9e) then Lu = (TL; quy)er + - + (X1 ajug)es € YL @y JE.
Thus Ce N My(YE) C I ®y, Y. This completes the proof of Lemma 6.3. O

Lemma 6.4. Suppose that the reductive K-algebraic group G istherestriction
of scalars of a reductive L-algebraic group G. If 5 € Homk (G, Gp) isa character
of G defined over K then, identifying G(K) with G(L), 5 is a character of G(L)
defined over L.

Proof. Recall that areductive group is the amost direct product of its maximal
central torus and its derived group. Hence g is a character of G(L) defined over
L if and only if f|s is a character of S (where Sis the maximal central L-torus
of G) defined over L and f3|g: = id (where G’ defines the derived group of G).
Let =R kS Then & is the maximal central K-torus of G. This follows from
the fact R k induces a one-to-one correspondence between L-subgroups in G
and K-subgroups in G and preserves the properties of being a torus or being
central (see [BT] §6.18-19). A proof of our lemma for G a torus is contained
in [O] §1.4. Since f(|g, is a character of & defined over K, [O] implies that
B|s defines a character of S over L. If V(G) is any verbal subgroup of G then
V(G) = R kV(9). Thus G' = R kG and hence §|g: = id. This proves our
lemma. (We also refer to §2.1.2 of [PR] where the statement of this lemma is
mentioned.) |

Having set up the language for restriction of scalars we may now state the
following:

ProrosiTiON 6.5. Let G bea linear algebraic group defined over a number field
Kandp : G — GL, beafaithful K-rational representation. Choosetwo characters
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051, B2 € Homk (G, Gn,) of G. Define, for each primep of K,
26,061,620 (8) = /G _181(9)F182(9) k()
p

where G, = p 1 (p(G(Kp)) N Mn(dk,)). Suppose that the matrix group p(G) can
be identified with the restriction of scalars of an algebraic matrix group G < GLy,
froman extension field L to K (where[L : K] =dand n=nogd). Let5: G — GLp,
denote the associated representation of G and suppose that p1, . .., p, denote the
primesin L dividing p. Then

r
Z6,p51520(9) = [ [ Zo. 5312 (9)-
i=1

Proof. By Lemma 6.3, p(G; = p(G(L ®k Kp)) N Mp, (9L @9y Vi, ). Since
L ®k Kp = [Ti=1 Lp; and 9L ®g, Ok, = [Tz O, it follows that Gy = [Ti=1 Gp;-
Lemma 6.4 ensures that the characters 51 and 3> define characters of G over L.
Hence

r
ZG 61,520 (9) = H 255 ,61,50.0i (9)- O
i=1

CoroLLARY 6.6. Let G be a linear algebraic group defined over K a finite
extension of Q and p : G — GL,, be a faithful K-rational representation. Let H
be the connected component of the reductive part of G. Suppose that p(H) can be
identified with the restriction of scalars of an algebraic matrix group H < GLy,
from an extension field L to K (where [L : K] = d and nh = npd) and that (i)
the functions §; : H — R (defined in §2) are characters; (ii) H isis L-split; (iii)
the maximal central L-torus S of H is one-dimensional; and (iv) there exists an
irreducible component  of the natural representation 5 of H which dominates the
remaining irreducible components. Then for almost all primesp of K:

)

(Cwewq A Haj ew(®-) qfi @~ GW/m)rsia))
(1 — g-fim(ristra)) H}:i (1- gfi@— (1)/m1)(rls+rz)))

61)  Zopp(®=]]

pilp

provided that Re(s) > max{—rz/rl, 1/r1(aym/bj(1) — rg)} where the product
[1,,, istaken over all primesp; in L dividing p, fi denotes the residue class degree
of p; over p and the numerical data m,ry, and rp,as,. .., &, bi(2),...,b(1) and
my is associated with the reductive L-algebraic group H; and
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(2) Zg p,p(s) satisfies a functional equation

ZG,p,p(S)|q—>q— H( 1)I+1 f. card<1>+ m(rls+r2)) ,p,p(S)-
pilp

Proof. This follows directly from Theorem 6.1 and Proposition 6.5. O

Note that this corollary encompasses groups whose reductive part is not K-
split. From a comment made in the proof of Lemma 6.4, and using the fact that
(L-dimension of an L-torus T)=(K-dimension of R kT), the maximal central
L-torus of H is one-dimensional if and only if the maximal central K-torus of H
is one-dimensional .

Asin Corollary 6.2, we can deduce a uniformity result in the situation detailed
in Corollary 6.6, in which the form of the local zeta function depends on how
the prime p behaves in the extension L.

CoRroLLARY 6.7. Suppose that G and p satisfy the hypothesis of Corollary 6.6.
Then for each finite family f = (fy,...,f;) of positive integers there is a rational
function W (Y, X) such that for almost all primesp of K

ZG,pp = Wi(0,q7°)

whenever p decomposes in L into r primes of residue class degrees fy, ..., f; re-
spectively.

The Cebotarev Density Theorem then gives us.

CoRroLLARY 6.8. Suppose that G and p satisfy the hypothesis of Corollary 6.6.
Then Zg ,(s) isalmost universal in p.

Finally we draw al this together to conclude the following theorem about
the zeta function ¢/ (s) associated to a finitely generated torsion-free nilpotent
group I':

THEOREM 6.9. Let I be a finitely generated torsion-free nilpotent group or a
ring additively isomorphic to Z9. Suppose that the algebraic automorphism group
associated to I' satisfies the hypothesis of Corollary 6.6. Then:

(1) for almost all primesp, ¢{\,(s) isarational function of the form (6.1);
(2 ¢f(s) isamost universal inp;

(3) for almost all primesp, (rA’p(s) satisfies a functional equation of the form

LoD)ppr = (= DMPAREL (),
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wheren; = (1 +1)", & = —mraf, by = (— mrp + card ®*)f wherep=p1---prinL
andf =f, +- .- +f, wheref; istheresidue class degree of p;.
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