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Annals of Mathematics, 137 (1993), 639670

Finitely generated groups, p-adic
analytic groups and Poincaré series

By MARrcus P.F. bu SAuToy

Introduction

Let G be a group and denote by a,(G) the number of subgroups of index
n in G. We shall only be interested in groups for which a,(G) is finite for
each n > 1. To each prime p and group G we can then associate the following
Poincaré series:

Cep(s) =D apm(G)p™.
n=0

In this article we are concerned with the following question:

Question. For which groups G and primes p can (g ,(s) be written as a
rational function in p~57

This is equivalent to the coefficients ap:(G) satisfing a linear recurrence
relation with constant coefficients for sufficiently large n.

These Poincaré series were first studied in the case when G is a finitely
generated, torsion-free nilpotent group in a paper by Grunewald, Segal and
Smith [GSSm|. There the authors established that, for such a group, (g (s)
is a rational function in p~°. In that setting the functions (g p(s) are the local
factors associated with the Dirichlet series

¢o(s) =Y an(G)n*
n=1

and ({¢(s) is equal to the product of these local factors. However this “Euler
product” decomposition does not appear to generalize to the case of non-
nilpotent groups.

In this article we show how integrals with respect to the Haar measure
on a pro-p-group can be used to deduce the rationality of our Poincaré series
from some very general finiteness conditions on a group G.

This generalizes the philosophy introduced by Igusa ([I1], [I2]). He showed
how to express Poincaré series associated with p-adic varieties as integrals
with respect to the additive Haar measure on Z,. Applying techniques from



640 M.P.F. DU SAUTOY

geometry, in particular Hironaka’s resolution of singularities, one can evaluate
a limited class of such integrals as rational functions in p~°. More recently
Denef and van den Dries ([D1], [D2] and [DvdD]) have applied results from
logic, profiting from the flexibility of the concept “definable”, greatly to enlarge
the class of integrals amenable to Igusa’s method. In subsection 1.1 we describe
the class of integrals considered by Denef and van den Dries.

In subsection 1.2 we consider integrals of the following form, defined with
respect to the Haar measure dy on a pro-p-group G:

Z(h,k, M, s) :/ p—sh(gl,-ﬂ,gr)—k(gl,.--,gr)du;
M

where M C G x -+ x G = G and h,k : G — Z. We define a twosort
language L associated with the class of pro-p-groups—the first sort ranges
over elements of the group G and the second sort over the p-adic integers
allowing us to define the natural action of Z, on a pro-p-group. We also
have a twoplace predicate, which defines the lower p-series P;(G) on G, where
P (G) = G and P41(G) = P(G)?[P,(G),G]. The key technical result of this
article concerns the case where G is a uniform pro-p-group—that is, a finitely
generated pro-p-group with the property that

(i) G/GP (or G/G* if p = 2) is abelian, and

(ii) |G : P2(G)| = |P(G) : Piy1(G)| for each 7 > 1.

THEOREM A. Let G be a uniform pro-p-group and M, h and k be as
above. If M is definable in Lo and the functions h and k are constructed
from definable functions in Lg, then Z(h,k, M, s) is rational in p~>.

A more detailed statement of this result can be found in Theorem 1.17.
The key ingredient in the proof of this theorem is one half of Lazard’s solution
to the p-adic version of Hilbert’s fifth problem. He showed how to define a
natural manifold structure on a uniform pro-p-group G (or p-saturable group
in the terminology of his 1965 paper [L]) with respect to which the group
operations are analytic; i.e., such a group G is a p-adic analytic group. We show
here that the natural action of Z, on G is also defined by analytic functions.
Using this structure on G, we show how to translate the definable group-
theoretic integrals Z(h, k, M, s) into the integrals of subsection 1.1 considered
by Denef and van den Dries.

In Section 2 we use the rationality results of Section 1 to prove the fol-
lowing theorem:

THEOREM B. Let G be a compact p-adic analytic group. Then (g p(s) is
a rational function in p~°.

In fact our techniques allow us to deal with the Dirichlet series counting
all subgroups associated with a compact p-adic analytic group:
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THEOREM C. Let G be a compact p-adic analytic group. Then there exist
an integer N and rational functions ®,(X) for each divisor n of N such that

Ca(s) =D n™°®u(p~).

n|N

(Note that, although in the context of profinite groups it is more natural to
count just open subgroups, in the situation of Theorems B and C all subgroups
of finite index are in fact open.)

We prove also that Theorem B is the best possible one in the case of
a pro-p-group G—namely that the rationality of {gp(s) implies that G is a
p-adic analytic group.

The proofs of Theorems B and C rely on the second half of Lazard’s
solution to the p-adic version of Hilbert’s fifth problem—that is, every com-
pact p-adic analytic group contains an open uniform subgroup. We begin
in subsection 2.1 by showing how to express the Poincaré series, counting
subgroups in a uniform pro-p-group as one of the definable group-theoretic in-
tegrals of subsection 1.2. In subsection 2.2 we then show how to extend these
integrals to count subgroups in finite extensions of our uniform pro-p-groups.
In subsection 2.3 we prove rationality results for variants of our Poincaré
series where we count only normal subgroups (subsection 2.3.1), r-generated
subgroups (subsection 2.3.2) and finally the number of conjugacy classes of
subgroups (subsection 2.3.3).

In Section 3 we apply the results of Section 2 to prove rationality results
for the Poincaré series associated with finitely generated groups satisfying some
very general finiteness conditions. The philosophy behind the proofs in that
section is to identify a compact p-adic analytic group, whose subgroups are
in one-to-one correspondence with subgroups we wish to count in our finitely
generated group.

The pro-p-completion of an abstract group gives us access to counting
only subnormal subgroups of p-power index. In particular, using Lubotzky
and Mann’s criterion in terms of polynomial subgroup growth for a pro-
p-group to be analytic (see [LuM2]), we prove the next theorem:

THEOREM D. Let T' be a finitely generated group, p a prime and denote
by a5 (I") the number of subnormal subgroups of index n in I'. If a;n(T) grows
at most polynomially with respect to p", then

Gp(s) =D as()p™

neN

is rational in p~5.
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However, under suitable finiteness conditions on a group I', we can iden-
tify a subgroup I'y of finite index, all of whose subgroups of p-power index
are subnormal. By extending the pro-p-completion of this group I'y by a fi-
nite group, we can construct a compact p-adic analytic group G having open
subgroups corresponding to all subgroups of p-power index in I'. This ap-
proach allows us to prove the following theorem (the upper p-rank of T is the
supremum of the ranks of all p-subgroups of finite quotients of I'):

THEOREM E. Let p be a prime and let T' be a finitely generated group
with finite upper p-rank. Then (rp(s) is rational in p~°.

An announcement of some of the results contained in this article appeared
in [duS1].

In a sequel [duS2] we apply the philosophy of Section 3 to the problem of
counting congruence subgroups in arithmetic groups. As a corollary to that
we mention the following result:

THEOREM F. Let I" be an arithmetic lattice inside G = SL,,, where n > 3.
Then (T p(8) is rational in p~° for all primes p.

The proof relies on various ingredients, including Guralnick’s classification
of subgroups of prime-power index in simple groups (cf. [Gu]) and the work of
Shorey and Tijdeman on exponential diophantine equations (cf. [ShT]). Note
that in Theorem F, (r,(s) =1 for almost all primes p.

Notation. The notation in subsection 1.1 is borrowed from the earlier
paper by [DvdD]. We have consistently used boldface to denote a tuple (or
vector) of elements.

(i) =d1+---+in, where i = (iy,...,iy) € NM,
Xi = X X, where X = (Xy,...,Xy) are commuting indetermi-
nates and i = (i1,...,iy) € NM,
" AR =AM ALY, where A = (Ag,...,Am) € Z;,"I and n = (n,...,ny) €
N

H <, G if H is a subgroup of p-power index in G.

H <, G if H is a normal subgroup of p-power index in G.

G = @G x --- x G, the direct product of r copies of a group G.
‘H denotes sets of subgroups.

M denotes sets of good bases for subgroups.

N denotes sets of bases for subgroups.

M, «q denotes the ring of matrices.
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1. Rationality of definable integrals

1.1. Definable p-adic integrals. For r € Qp, |r| denotes the normalized
absolute value p~*("), where v(r) = ord,(r). We denote by v the additive Haar
measure on Zy, so normalized that v(Z,) = 1, and also (by abuse of notation)
the product measure on free Z,-modules of the form Z}.

With each pair of functions f; : Zﬁ” — Qp, f2:Z," — Qp and the subset
S C Z{‘,’I we associate the following function:

I(fi, f2,5,5) = /S L) fo(x)|dv.

(Here s denotes a complex variable and x = (3, ..., ) ranges over S.)

This integral generalizes Igusa’s local zeta function (cf. [I1]). In this sec-
tion we describe the class of integrals evaluated by Denef and van den Dries
as rational in p~°.

Definition 1.1. Let X = (X1,..., X)) be M commuting indeterminates
and let Qp[[X]] denote the set of formal power series

Z aiX;:l e X}'&'[
ieNM
in the commuting indeterminates, where a; € Q,. We define the following
subsets of Q,[[X]]:
(i) Z,[[X]] denotes the set of power series Y a;X! with a; € Z, for all
ie N
(ii) @Q,{X} consists of all formal power series Y a;X! such that |a;] — 0
as (i) — oo;
(i) Z,{X} = Z;[[X]) N Q{X}.
(Here (i) =41 + - -- + ip, where i = (41,...,inm).)

Definition 1.2. Let V be a nonempty open subset of Zﬁ’f and let f :
Z;’,” — Zy be a function from V into Z,. We say that f is analytic at y € V
if there exist a formal power series F(X) € Z,{X} and h € N such that
f(y +p"x) = F(x) for all x € Z}. We say that f is analytic on V if it is
analytic at each point of V.

We shall need the following two lemmas concerning analytic functions.

LEMMA 1.3. Suppose that fi,...,fn : Z{,” — Zp and g : Zf,v — Zyp are
analytic functions on Z;,” and Zg,v , respectively. Then gof : Z{‘f — Zp is
analytic on ZII,"I .

Proof. See [DxduSMS], Ch. 9, Lemma 9.4. m|
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LEMMA 1.4. Suppose that F(X) = Y ;cnm ainl X}“,}‘ converges on
some open subset U of ZII,"I . Then there exists n such that p"¥q; € L.

Proof. See [DxduSMS], Ch. 7, Lemma 7.18. O
Definition 1.5. (i) We define the function D : Zf, — Zyp by

D(z,y) =4 &y iflel<lylandy #0,
(2,9) {0 otherwise.

(ii) For n > 0 we define P, to be the set of nonzero n‘® powers in Z,.
We define now the language considered in [DvdD)].

Definition 1.6. Let L2 be the language with logical symbols =, =, V, A,
a countable number of variables X; and

(i) an m-place operation symbol F for each F(X) € Z,{X}, m > 0;

(ii) a binary operation symbol D; and

(iii) a unary relation symbol P, for each n > 0.

Note that if m = 0, then F'(X) defines constant terms in our language for
each element of Z,.

We refer the reader to [DvdD], §0, for a self-contained account of the
notions from logic that we shall use. In particular we have the concept of a
formula in £2 and its interpretation in an £2 structure. For our purposes
we shall only be interested in the structure Z, and then the following shows
how to interpret a formula in this structure:

Definition 1.7. Each formula ¢(X3, ..., X)) in the language L2, defines
a subset
My,={xe Z;,M | #(x) is true in Zp},

where we interpret
(i) each F € Zy{X} as the function f : Z¥ — Z, defined by f(x) = F(x);
(ii) the binary operation symbol D as the function in Definition 1.5, and
(iii) Py(z) to be true if z € P,, where P, is the subset in Definition 1.5.

We call such a subset M, definable (in £D,). A function f : V — Z, is
called definable if its graph is a definable subset. We shall call I(fi, f2, S, s) a
definable integral if f; : Z) — Qp and f; : ZY — Q, are definable functions
and S is a definable subset of Z.

THEOREM 1.8. Suppose that I(fi, f2, S, s) is a definable integral. Then

(i) S is measurable, and

(i) I(f1, f2, S, 8) is a rational function in p~°, which can be written as a
polynomial in p~° with rational coefficients, divided by a product of factors of
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the form (1 — p~® %) with a,b € Z. Moreover each pole of I(fi, f2,S,s) has
multiplicity at most M, where M is the number of variables in I(f1, f2,S5,s).

The reader should consult [DvdD] and [D3] for a proof of this theorem.
However let us mention the essential steps in the proof.

(i) Z, admits quantifier elimination in the language £2,. This result, due
to Denef and van den Dries, extends Macintyre’s quantifier elimination for
the algebraic theory of Z, (see [M]). It allows us to decompose the definable
integral into a finite sum of integrals over sets defined by formulae without
quantifiers.

(ii) We then apply a p-adic analogue of Hironaka’s rectilinearization the-
orem to eliminate occurrences of the function D.

(iii) These much simpler integrals can then be evaluated (4 la Igusa) by the
use of a version of Hironaka’s embedded resolution of singularities. In [vdD],
van den Dries outlines a proof of Theorem 1.8 without using any resolution
of singularities.

In the next section we shall define a language for the theory of pro-
p-groups, which we shall interpret in the language EaDn. To do this we need
the following two lemmas:

LEMMA 1.9. Let f : Zi'," — Zyp be an analytic function. Then f is a
definable function in LZ .

Proof. For each a € Z}’,"I there exist a formal power series

FX)= ) aXi'-- X3 € QX]]

icNM

and h € N such that if x € a +phZ£’I, then f(x) = F(x —a). By Lemma
1.4 there exists n € N such that p{%q; € Z, for all i € NM. (Note that since
f(a) € Zy, this ensures that ag € Zy.) Let

G(X)= > pmaxj - X3 € Z,[[X]]

ieNM

and N = max(n+ 1,h). If x € a+pNZ£’I, then f(x) = G(D(x — a,p™*!)).
Since {a + p" Zﬁ,” |ae ZIJ,” } is an open cover of the compact space Z;‘,’I , there
exists a finite cover {a; + p¥ Zg” } on which f is given by a definable function
Gi(D(x — a;,p™*1)). Since each of the open subsets is definable, this implies
that f is definable. O

LEMMA 1.10. The twoplace predicate defined by v(x) > v(y) is definable
in LD.
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Proof. An application of Hensel’s lemma implies that for all z,y € Z,

z=0ory’+pz2ec P, ifp+#2,

O
z=0o0ry’?+8z2c P, ifp=2.

v(z) > v(y) if and only if {
1.2. Definable group-theoretic integrals. In this subsection we define a
filtered group-theoretic language L and a class of integrals over the Haar
measure of a group that can be evaluated as rational functions. Although
there is not much content beyond translating these integrals into the integrals
considered in the previous section, we do provide a more convenient setting
for the proofs to come in the latter half of this article.
Let G be a pro-p-group. Then G admits a natural action of Z, as detailed
in the following:

Definition 1.11. Let A € Z, and g € G. We define

g* = lim g,
n—oo
where (a,) is a sequence of rational integers with lim, ,ca, = A. (It is a
straightforward exercise to show that this is well defined.)

The following series of (topologically) characteristic subgroups associated
with a pro-p-group G will be of importance to us:

Definition 1.12. Let G be a pro-p-group. We define the lower p-series in
G to be {P;(G) | i > 1}, where Pi(G) = G and P11(G) = P,(G)?[P(G),G].
(Here H denotes the topological closure of the set H in G.) Define w: G —
NU {oo} by w(g) =n if g € P,(G) \ Po41(G) and w(1) = oo.

Note that P,(G) is the Frattini subgroup of G. If G is finitely generated
(topologically), then the minimum number of topological generators for G,
denoted by d(G), is dimp, G/P>(G). We now associate a twosort language to
the pro-p-group G. (A twosort language is a language with two distinct sets
of variables called sorts. We must then specify on which sort a function or
predicate in the language is defined. An interpretation of such a language
entails naming two domains over which the two sorts range.)

Definition 1.13. Let Lg be the language having two sorts x and A\. We
have constant symbols in the sort z, for each element of the pro-p-group,
together with a binary relation symbol z|y on the sort z x z. We have the
following function symbols, which all define elements in the sort z:

(i) a binary function symbol z.y on the sort = X z;

(i) a unary function symbol z~! on the sort z;

(iii) a binary function symbol z* on the sort z x X;

(iv) a class of unary function symbols ¢ on z.
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We construe a pro-p-group G as an Lg structure by allowing the sort x
to range over G and the sort A to range over Z,. The interpretation of the
function symbols is clear, apart from the class in (iv), which we shall interpret
as specific automorphisms of our group G. The symbol z|y will be interpreted
as the relation w(z) > w(y).

Definition 1.14. We shall call a subset M C G x --- x G = G") definable
if there exists a formula ¥(z1,...,z,) in Lg with r free variables of sort z
such that

M={(g1,---,9r) | ¥(91,...,9r) is true in G}.
A function is called definable if its graph is definable.

Let u be the normalized Haar measure on G and (by abuse of the notation)
the product measure on G x --- X G = G(). Let M be a definable subset of
G and h; and k; be definable functions (i =1,...,m and j =1,...,n). We
shall consider the following integrals

Z(h’ k’M, S) = ‘/.A\Ap_Sh(gly"'ygT)_k(gl1"'1gr)du’

where h: M — Z and k : M — Z are defined by

h(gla cee ,gr) = 61w(h1(gla oo 191”)) +-+ 5mw(hm(gla ey gr))a
k(gl, o ’gr) = 6l(“)(kl(gla L ’gr)) +---+ En(“)(kn(gla .. 7g7‘))7

and 6;,¢; € Z. We describe a class of pro-p-groups for which this function is a
rational function in p~°.

Definition 1.15. A pro-p-group G is uniformly powerful, or just uniform,
if

(i) G is finitely generated;

(ii) G is powerful—that is, G/GP (or G/G* if p = 2) is abelian; and

(iii) for all ¢ > 1,

|B(G) : Pia(G)| = |G : Po(G)]-

Lazard called such groups p-saturable; for a detailed account, see
[DxduSMS], Ch. 4. These groups were the key to his characterization of com-
pact topological groups with the underlying structure of a p-adic analytic
group—the p-adic version of Hilbert’s fifth problem (see [L] or [DxduSMS],
Ch.9).

THEOREM 1.16. A compact topological group has the structure of a
p-adic analytic group if and-only if it contains an open normal subgroup that
is a uniformly powerful pro-p-group.
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We use Lazard’s work on the analytic structure of uniformly powerful
pro-p-groups to prove the following:

THEOREM 1.17. Let G be a uniformly powerful pro-p-group and let
@1,...,0: be automorphisms of G. Suppose that M is a definable subset and
hi and k; are definable functions (i = 1,...,m and j = 1,...,n) in Lg,
where the function symbols ¢1,...,¢; are interpreted as the automorphisms
@1,...,0s. Then Z(h,k, M, s) is a rational function in p=° (where h: M — Z
and k: M — Z are defined above).

We begin the proof with the following;:

THEOREM 1.18. Let G be a uniformly powerful pro-p-group with d(G) =
d. Let {z1,...,z4} be a (topological) generating set for G.

(i) For each x € G there exist unique A1,...,Aq € Zyp with the property
that

T = mi\l - -a::i\" =x(A), say.

(ii) The function f : Zg X sz, - Zg defined by
x(N) (x(w) ™" = x(f(A, 1))

is an analytic function.
(iii) Let ¢ be an automorphism of G. The function ® : Zg — Zg defined
by
x(A)? = x(2())

is an analytic function.
(iv) If x =x(A) € G, then w(z) = min{v(X\;) +1|i=1,...,d}.

Part (i) provides us with a global coordinate system with respect to which,
by part (ii), the group operation is analytic. Thus the group has the structure
of a p-adic analytic group. The proof of (i) follows by succesively approx-
imating the element z with respect to the filtration {P;(G) | i« > 1}. We
shall apply a similar argument when we consider subgroups of G. Part (ii)
is proved by using the completion of the group ring Z,[G] with respect to a
filtration induced from the lower p-series on G. Part (iii) follows from the fact
that the analytic structure on the uniform pro-p-group G defined in (i) is the
unique analytic structure that makes G into an analytic group. Part (iv) is a
consequence of the fact that, for a uniform pro-p-group G, the p*® power map
z +— zP induces an isomorphism

fi: P(G)/Pi41(G) — Pit1(G)/ Pi42(G),
where if z = x(\) € P,(G), then f;(x(X\))P+1(G) = x(pA) Piy2(G).
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For proofs of these statements we refer the reader to Lazard’s original
paper [L] or to Chapters 4 and 8-10 of [DxduSMS].

This theorem is the key to interpreting filtered group-theoretic statements
in the language £2 described in subsection 1.1. We shall also need the fol-
lowing lemma:

LEMMA 1.19. The function g : Zg X Ly — Zg defined by

x(A) = x(g(A, 1))

is an analytic function on Z¢ x Z,.

Proof. By part (ii) of Theorem 1.18, for each i = 1,...,d, there exist
@imn € Qp such that for all A, p € Z¢

fild,p) = Z Gimnn AT - Nl
(m,n)eN24

By Lemma 7.19 of [DxduSMS] there exists k € N such that foreachi =1,...,d
and (m,n) € N%
Alp = P g, € 7,

We shall prove that the function g : pk+2Zg X pZLy — Zg is analytic. By Lemma
10.2 and the proof of Proposition 10.1 of [DxduSMS] there exist power series

¥ii(X) = ) cijnXit - Xt € Z[[X]]
neNd

fori=1,...,d and j > 1, with the property that c;jn = 0 for (n) < j and, for
each A € p"*2Z¢ and p € Z,,

[e.0]

s =3 (4 )07,

J=1

Define vjm € Q by (%) = 3,,cn ¥jmi™. Suppose now that A € p+2Zg and
W € pZy. Then

HCWNEDY (Z (Z cijnvjmum(p_k/\)“) ) :
j=1 \meN \neN¢

If we can prove that

(1.1) oD leijnVjmu™ (@A) =0,
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then by Proposition 7.11 of [DxduSMS]

gi(A,p) = Z C;nn"mAn’
(m,n)eNd+1
where ¢/, = Z;‘;I c,-jnujmp‘<n>k ; i.e., g is analytic on p(kfz)Zp X PLyp.
To prove equation (1.1) note that |vj,| < [j!] < pU~1/®-1) by Lemma
7.21 of [DxduSMS]. So for all j and m
|cijnVimp™ (pFA)?| < pU=1/ (=) p=2(m),

Since cijn = 0 for j > (n), we have lim) o0 |Cijn¥jmp™ (p~*A)®| = 0 uniformly
in j and m. It suffices now to prove that, for (n) fixed,

lim |cijn1/jmum(p_k)\)“| =0.
m—00

i+
But this follows from the fact that cijn = 0 for j > (n) and

|cijnVimp™ (P F A < 6p™™

for some constant 6. Thus equation (1.1) holds.
If a € Z, then g, : Zg — Zg, defined by

x(A)* = x(ga(N)),
is analytic. We finish the proof of our lemma by proving that, for each a € Z,
g: Zg x (a + pF+3Z,) — Zg is analytic. Now
(1.2) X(A)*PH = x(ga(N)) - x(ggera (V).
But gy+2(A) € pk+2Zg. Since compositions of analytic functions are analytic,
equation (1.2) implies that g is analytic on Zg x (a + pF+3Z,) for all a € Z,
i.e., g is an analytic function on Zg X L. O

LEMMA 1.20. Let G be a uniformly powerful pro-p-group with d(G) = d
and let {z1,...,z4} be a topological generating set for G. Define

¢1erd(Zp)—>Gx---xG=G(r)

by ¢(M) = (x(my),...,x(m,)), where m; denotes the i® row of the matriz
M e M,»q4(Zy).

(i) ¢ is a homeomorphism.

(ii) If X C G is definable in Lg, then ¢~1(X) is definable in LD,

(iii) X is a measurable subset if and only if $~1(X) is a measurable subset
of Mrxa(Zyp). In this case, u(X) = v(¢~1(X)).

Proof. Part (i) follows from Theorem 4.9 of [DxduSMS]. Part (ii) is a
consequence of Theorem 1.18 and Lemma 1.19 together with Lemmas 1.9 and
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1.10. We prove part (iii) as follows: The additive Haar measure v on Zg defines
a measure on G. The measure v induces a measure on G/G+1, which coincides
with the measure induced by p on G/Gp+1. By Bourbaki’s Integration VII
([B], §1.6), this implies that the measures v and p coincide on G. From this
part (iii) follows. a

Proof of Theorem 1.17. Fix a topological generating set for G. Let S C
M, «4(Zp) be the set of matrices M such that

(x(my),...,x(m,;)) € M,

where m; denotes the i*h row of M. Then, by part (ii) of Lemma 1.20, S is
definable. We define the functions H; : S — ZZ and K;: S — Zg i=1,....m
and j=1,...,n) by
x(H;(M)) = hi(x(my),...,x(m,)),
x(K;(M)) = kj(x(my), ..., x(my,)).
By part (ii) of Lemma 1.20 the functions H; and K; (i = 1,...,m and j =
1,...,n) are definable.
Define for each 7 =1,...,d
Aj={ac Zg | v(a;) < v(a;) for 1 <i < j,v(aj) <wv(a;) for j <i<d}.

Then {A4; | j = 1,...,d} is a partition of Z{ into definable subsets. Define
0 : 23 — Z, by 6(a) = a; if a € A;. Since the A; are definable, 6 is a definable
function. Then we claim that

2k, M) = [IBCD) - 0(HA (M)
S
|0(K1 (M) - - - 0(Kn(M))™|dw.
This follows, since if we define
MU = {(gl’-- . ,gr) eEM | h(gla s ’gT) = i’k(gl" . >gr) :J}’
Sij = {M € Myxa | [0(H\(M))? - - - 0(Hn(M))™| = p™°,
(K1 (M) - - - 0(Kn(M))"| =p~’},
then M;; = ¢(S;;) and, by part (iii) of Lemma 1.20 and part (i) of Theorem
1.8, u(Mij;) = v(Si;). The result then follows from part (ii) of Theorem 1.8. O

Although we have seen that the rationality follows simply by translating
our group-theoretic integrals to the definable integrals of subsection 1.1, it
would be interesting to see whether a suitable group-theoretic language can be
devised that admits quantifier elimination for our uniform groups. Combined
perhaps with some cell-decomposition theorem, we could then evaluate these
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integrals within the context of the language of group theory, with the hope
that some group-theoretic interpretation can be given to the rational functions.
Some hope for such a cell decomposition may arise from the connections with
0-minimal sets, p-adic analytic groups and such a cell decomposition. As we
shall see later, we are unable at present to get much control of the rational
functions.

2. p-adic analytic groups

We defined in the Introduction the following Poincaré series associated
with a group G and prime p

(o o]
Cop(s) =D ap(G)p™™,

n=0
where a,(G) denotes the number of subgroups of index n in G. We prove
in this section that if G is a compact p-adic analytic group, then (g (s) is a
rational function in p~°. We shall prove this in two stages. In subsection 2.1 we
consider the special case in which G is a uniformly powerful pro-p-group. We
show how to express (g p(s) as a definable integral in L;. We can then apply
Theorem 1.17 to deduce the rationality of (g p(s). In subsection 2.2 we show
how to extend the integral considered in subsection 2.1 to count subgroups in
a finite extension of a uniformly powerful group and then appeal to Theorem
1.16 to deduce Theorem B. We also point out that Theorem B is the best
possible for the class of pro-p-groups. The section ends with some examples
calculated by Ilani. In subsection 2.3 we consider variants of our Poincaré
series in which we restrict our attention to counting subgroups with various
particular properties.

2.1. Uniformly powerful pro-p-groups. Throughout the rest of this sec-
tion we fix G to be a uniformly powerful pro-p-group with d(G) = d. We also
fix a topological generating set {zi,...,z4} for G. We prove the following
special case of Theorem B:

THEOREM 2.1. Let G be a uniformly powerful pro-p-group. Then (g (s)
is a rational function in p~°.

For each n > 1 we shall set G,, = P,,(G), the n'® term of the lower p-series
of G. Recall that the p*® power map x — z? induces an isomorphism

fi : Gz‘/Gi+1 - Gi+l/Gi+2a

where if z = x(X) € G;, then fi(x(X))Gi+1 = x(PA)Giyo. Let m: Zy — Fp
denote the residue map. Define a map for each n > 1

Wn:Gn—>IFg
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by mn(x(A)) = (x(p~®"VAy),..., (@~ D)) Then 7, is a homomorphism
with ker m, = G, 1.

The philosophy behind the proof of this theorem is to express (g p(s) as
a definable integral. The key to such an expression is the following definition:

Definition 2.2. Let H be an open subgroup in G. We define a d-tuple
(h1,...,hq) of elements of H to be a good basis for H if

(i) w(hi) < w(h;) whenever i < j, and

(ii) setting I, = {j | w(h;) = n}, {mn(h;) | j € I,} extends the linearly

n—w(h;)
independent set {7rn(h§ "Ylj€nU---UI, 1} to a basis for m,(H N Gy).

Remarks. (i) Since f; : G;/Git1 — Git+1/Git2 is an isomorphism, the set

n—w(h;)
{mn (b ") | j € U---UI,_} is a linearly independent subset of 7,(HNG,,).
(ii) A good basis for G is precisely a minimal topological generating set
for G.
(iii) The set I, is independent of the choice of a good basis.

Definition 2.3. If (hy,...,hq) is a good basis for the open subgroup H,
then define
e(naj) = max{n - w(hj)a O}

foreachn >1and j=1,...,d.

LEMMA 2.4. Let H be an open subgroup with a good basis (hy,...,hg).
(i) If h € H, then there exist Ay,...,\q € Z, such that

h=h}---h)* =h()\), say.
(i) If h = h}'--- k), then w(h) = min{w(h;) +v(X) |i=1,...,d}.

Proof. (i) It suffices to define, for each i = 1,...,d and j > 1, \;(j) € Z
such that \;(§) — X\(j + 1) € p?U9Z and

h= hi\l(j) e h;“(j) (mod Gj1).

e(k,1

We define );(j) recursively. Note that, for k > 1, {h] ), e, hge(k‘d)} generates
HNGk modulo Gg+3. This provides our base step and the key to our recursion.
Suppose that we have defined \;(j) for 1 < j < k. Then

h=hrpED LD (mod Gy).
So for some gx € H N Gy, it follows that
h= hi\l(k-l) y h:i\"'(k_l) -gr  (mod Gg41).
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Now there exist ui,..., g € Z such that

e(k,1)

gk = h"P

RY A (mod Gg+1)-

But note that Gi/Gg+1 is central in G/Gg4+1 by the definition of the lower
p-series. So setting \;(k) = Xi(k — 1) 4+ p*®9 ;. we deduce that

h= hi\l(k) e h:}“(k) (mod Gg41).
Thus setting A; = lim;_,o A;(j) yields
h=h---h).

(i) Let b = hJ"- --h:}“ and define n = min{w(h;) + v(\;) | ¢ = 1,...,d}.
Then h € G,,. Suppose that h € G,+1. Then 7,(h) = 0. Since

{ra (") lie Lu---U L}

is a basis for m,(H N G,), this would imply that v(p=¢(™%);) > 1 for each i =
1,...,d; ie, w(h;) +v(X\) > n+1. Consequently h ¢ Gpy1; ie., n =w(h). O

LEMMA 2.5. (h1,...,hq) is a good basis for some open subgroup of G if
and only if

(i) w(hs) < w(h;) whenever i < j;

(ii) h; #1 fori=1,...,d;

(iii) {R}*--- h:}“ | Xi € Zp} is a subgroup of G; and

(iv) for all Ayi,...,Aq € Zp, w(h) = min{w(h;) +v(N) |i=1,...,d}.

Proof. Lemma 2.4 establishes one half of this lemma. Conversely suppose
that parts (i)-(iv) hold and let H = {hi\1 "'hé\d | Ai € Zp}, a subgroup in G
by part (iii). By part (iv) HnNGy = {h’\l---h’\“ | A\ € p?®9Z,}. Thus
{wk(hpe(kz)) | i€ I U---U I} generates mx(H N Gg). (Note that mx(h;) = 0 if
i € I; for j > k.) The linear independence of {wk(hp ) i€ LHU---UI}
is equivalent to the nonexistence of \; € Z, \ pZ, with the property that

w(hi\‘pe(k’l) . km)) > k, where m = card(Il; U--- U I;). Since w(h*) =
w(h)+v(A), the linear independence of this set follows from part (iv). Finally
we must prove that H is open. By part (ii) there exists n € N (i.e., n = w(hq))

such that 7, (HNG,) is a subspace of dimension d. Thus 7,(HNG,) = 7,(G,);

. h)\mp

ie., H>G,. O

LEMMA 2.6. Let (hy,...,hq) be a good basis for the open subgroup H
in G. Let s, = card I, and suppose that hi,.. .,hfi are elements in H with
hi = h{" - --h34, where a;; € Z,. Then (hi, ..., h}) is a good basis for H if and

only zf a;j € pe(“’( )’J)Z and, whenever Spn # 0 then (aij)ijer, € GLs,(Zyp).
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Proof. The d-tuple (h1,...,h}) is a good basis for H if and only if

(i) for each i =1,...,d, w(h]) = w(h;), and

(i) for each n, {m,(h) | i € I,} is a basis for m,(H N G,) modulo
mn(HP N Gy).
Now w(h}) > w(h;) if and only if a;; € p°“*))Z,. Condition (ii) holds if and
only if (7(ai;))ijer, € GLs,(Fp); i-e., (aij)ijer, € GLs,(Zp). This also ensures
that w(h]) = w(h;) and thus proves the lemma. ]

We associate with each subgroup H of finite index in G the subset M (H)
of G@ consisting of all d-tuples (h1,-..,hqg), which are good bases for H. Let
(hi,...,hq) be a good basis for H and define ¢; = p*(*)~1 which is independent
of our choice of a good basis.

LEMMA 2.7. Let H be a subgroup of finite index in G. Then M(H) is
an open subset of G@ and

d
pMH) =0 -p ) ]a" ol a7"

i=1

Proof. The subgroup H is open in G so that G,, < H for some m. To
prove that M(H) is open it suffices to show that for all (hy,...,hq) € M(H)

(K. hy) € M(H),

where h] = h;g; and g; € Gt1. Since my(h;) = my(hl) for all n < m, this
follows from the definition of a good basis for H. Thus M(H) is open and
therefore measurable.

We fix a good basis (h1,...,hq) for H. Since the p** power map induces
the isomorphism f; : P;(G)/P;+1(G) — P,+1(G)/P;+2(G) for each i > 1, there
exists a good basis (y1,...,ya) for G with the property that y* = h;, where
g = p*")=1, Define

¢ : My(Z,) — G

by ¢(M) = (y(m;y),...,y(my)), where m; denotes the i** row of the matrix
M € My(Z,). Let
A= {(aij) € Mu(Z,) | aij € gz,

and, whenever s, # 0, then (qj_laij)i’jejn € GL,,(Zy)}.
Then, by Lemma 2.6, ¢(A) = M(H), where ¢ was defined in Lemma 1.20.

By part (iii) of Lemma 1.20, u(M(H)) = v(A). For each s # 0 we calculate
the measure of the block

Ay = {(aij) € My xa(Zp) | i € Ii
and a; is the i*® row of some M € A}.
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By the definition of e(w(h;),j) we have

Lewh)g) — J & i<,
%P { g ifi>j.
The measure of GL;,(Z,) is equal to (1 — p~1)%. Therefore
v(A) = (L -p )™ [[ a7 aih - aa"
1€l
Since [1U---UIl, ={1,...,d}, A= A1 X - - xAp and v(X xY) = v(X)-v(Y),
it follows that

V(A) — (1 _ p—1)31+-~‘+3m H qi—i . qi—+11 . q;l

i€hU--Uly,
~1yd - - -1
= (l—p ) qu‘ 1‘qi+11“‘qd )
proving the lemma. O

Using Lemma 2.7, we can express our Poincaré series in the form of a
group-theoretic integral. We define for each i = 1,...,d the function f; :
G9 — G by fi(g1,...,94) = gi- Let H be a subgroup of finite index in G.
Recall the definition of ¢; given above Lemma 2.7. For all (hy,...,hq) € M(H),
peUithisha))=1 — . Note that

G : H| =[] IG:H : Gip1H| =[] IGi : Gi N Gin1 H|
i>1 i>1
— pw(hl)_l .. w(hd)_l — ql ceqd

4
Define h: G4 — N and k: G@ — N by
hg1,---,9a) =w(fi(g1,---,9a) + - +w(falgn,---,94)),

M‘“

k(gl,-"’gd Z_l fl g1, - - agd))‘
z=1
Then
d
G : H|—s — (1 _ p—l)—d Hps—2i+1/ p_Sh(gl""’gd)+k(gl""’gd)d/,t.
i=1 M(H)
Defining M = Uy, M(H) leads to
d
(21) CG,p(s) = (]_ _p—l)—des—2i+1/ p‘Sh(glv-ugd)"‘k(gl,---,gd)d#.
M

i=1
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LEMMA 2.8. (a) The functions f; are definable for each i =1,...,d.
(b) M is a definable subset of G¥.

Proof. Part (a) follows immediately from the definition of f;. For part
(b) it follows from Lemma 2.5 that (hy,...,hy) € M if and only if

(i) w(hi) < w(hy) for i < j;

(ii) h; #1 foreachi=1,...,d;

(iii) for all A, pu € Zg there exists v € Zg such that

R bt = hi\l . -~h3d(h‘{‘ N A
(iv) for all A € Zg
w(h}' - h}) = min{w(h}) |i=1,...,d}.
Since h; = fi(hi, ..., hq) is a definable function, the conjunction of statements

(i)-(iv) is a formula in L defining the subset M. m|

Proof of Theorem 2.1. In equation (2.1) we expressed (g p(s) as a group-
theoretic integral. By Lemma 2.8 this integral is definable in £Lg. Thus we
are in a position to apply Theorem 1.17 to deduce that {gp(s) is a rational
function in p~*. a

2.2. Compact p-adic analytic groups. Let G be a compact p-adic analytic
group. By Theorem 1.16 there exists a uniformly powerful normal subgroup
G, of finite index in G. Let K be a subgroup of G with the property that
G1 < K. Define

Epls)= > IK:H|,

HeH(K)

where H(K) = {H < K | G1H = K}. In this part we show how to extend the
integral constructed in subsection 2.1 to prove the following:

THEOREM 2.9. ¢ (s) is a rational function in p=*.

Theorem 2.9 suffices to prove Theorems B and C, since

Cap(8)= D 1G:K|7°CE,(s),

GlstpG
Gels)= D |G :KI7CE,(s)-
G1<K<G
Throughout the rest of this section we fix a right transversal (y1,...,y,) for

G:1 in K with y; = 1 and a good basis (z1,...,z4) for G;. The following
concept is the key to expressing Cg, p(s) as a definable integral.
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Definition 2.10. Let H € H(K). We call (t1,...,t,) a transversal basis
for H if

(i) t; € Gy foreach i = 1,...,n, and

(ii) (t1y1,--.,tnyn) is a right transversal for H; = HNG; in H.
We call (hy,...,hq,t1,...,t,) a basis for H if (hy,...,hq) is a good basis for
H; = HNG; and (t4,...,t,) is a transversal basis for H.

With each subgroup H of finite index in G we associate the subset T'(H)
of Gg") consisting of transversal bases for H.

LEMMA 2.11. Let H € H(K). Then T(H) is an open subset of G\ and
w(T(H)) = |Gy : Ha|™.

Proof. If we fix a transversal basis (¢1,...,t,) for H, then
(22) T(H) = H1t1 X e X Hltn.

The coset Hit; is an open subset of G; with Haar measure |Gy : Hi|™!. The
lemma now follows from equation (2.2). a

Let N(H) = M(H;) x T(H), i.e., the set of bases for H. We define for
each i = 1,...,d the function f; : G4t") — G by fi(g1,...,9d+n) = gi. Define
h:G@ — N and k: G4 — N by

(2.3) h(g1,--.,9d+n) =w(fi(g1,--->9d+n)) + - +w(fa(91,- - -, 9dsn))s
d
(2.4) k(g1,--.,9d4n) = 2(22' +n— 1w (fi(g1,---,9d+n))-
im1
Then by Lemma 2.11

K : H|™ = |Gy : Hy|™®

d
=(1- p—l)—d Hps—2i+1-n/ p_Sh(gl7---7gd+n)+k(gl1---agd+n)d'u.
i=1 N(H)

Defining NV (K) = Ugen(x)N (H) leads to
d
Cg’p(s) o (1 — p—l)—des—2z+1—n/ p_Sh(gl1-~~1gd+n)+k(gl7---1gd+n)d#
i=1 N(K)

(2.5) —c / Flon, ., gasn)dp, say.
N(K)

LEMMA 2.12. N(K) is a definable subset of G§d+").
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Proof. The (d + n)-tuple (hi,...,hq4,t1,...,t,) € N(K) if and only if
(h1,...,hgq) is a good basis for some subgroup H; of G; and the set X =
Hityy; U--- U Hitpy, is a subgroup of G. The set X is a subgroup provided
that
(2.6) htiyi(h'tjy;) ™' € X
for all h,h' € Hy and i,j = 1,...,n. Define a;j, b; € G along with

v:{l,...,n}>* > {1,...,n} and §:{1,...,n}—{1,...,n}
by
Yil¥5 = QijYy(i,5)»
y; ! = biysi)-
Since G is normal in G, it is a straightforward exercise to check that (2.6) is
equivalent to the following condition

htiys (biye(i) (5 B~ )Ya0)) Vi " aists) = R"tyi50))

for some h” € H;. So, by Lemma 2.8 and the above, the set N'(K) is definable
by a statement in Lg, where we include automorphisms in L¢ for conjugation
by each transversal element y;. O

Proof of Theorem 2.9. In equation (2.5) we expressed Cg ,(8) as a group-
theoretic integral. By Lemma 2.12 this integral is definable in Lg. Thus we
are in a position to apply Theorem 1.17 to deduce that Cg’ p(s) is a rational
function in p~%. O

For the class of pro-p-groups, Theorem B is the best possible in the fol-
lowing sense:

THEOREM 2.13. Let G be a pro-p-group. Suppose that (g p(s) is a ration-
al function in p~°. Then G is a p-adic analytic group.

Proof. By [LuM2], Theorem 3.1, or [DxduSMS], Theorem 3.19, it suffices
to prove that ay» = ap(G) grows at most polynomially with p". As we pointed
out in the Introduction, (¢ y(s) being rational is equivalent to the coefficients
ay satisfying a recurrence relation

apn + C1apn-1 + -+ + CRpn—k = 0,
where n > 1 and ¢y, ..., c; are independent of n. It follows that

'apnl S KC",
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where K is independent of n and C = |ci| + - - - + |cx|. Hence
lapn < K(p")%;
i.e., a;» grows at most polynomially. O
We conclude this section with some examples calculated by Ilani [I1].

Ezamples 2.14. Let G = SLy(Z,) and denote by G(i) the i*® principal
congruence subgroup

1 — G(i) —» G — SLy(Z,/p'Z,) — 1.

We use the shorthand notation introduced in [GSSm)] for the following rational
functions in p~%:

Xg=p"%, PB=01-X})"', Zz.=FRP.. P,
Then
Caiyp(8) = Ca)(s) = Z3 — X5 PP (Xng? Py +(p+1)P P}
- (Xi(@*-p-1)-1)P)P}
- +X{’)P{’P12).

2.3. Variations. In this part we study some variants of the Poincaré
series considered in the previous sections. Although we only consider functions,
counting subgroups of p-power index, clearly we can prove similar results to
Theorem C for the corresponding global Dirichlet series.

2.3.1. Normal subgroups. Define
H*={H <, G| is a normal subgroup in G}.

We consider the following Poincaré series associated with this set of sub-

groups:
Gpls)= Y IG: H|™
HeH?

THEOREM 2.15. Let G be a compact p-adic analytic group. Then Q‘;,p(s)
is a rational function in p~°.

Proof. Let G; be a uniformly powerful subgroup of G and K be a normal
subgroup of G with the property that G; < K. Fix a good basis (z1,...,z4)
for G; and a right transversal (y;,...,¥n) for G; in G with the property
that (yi,...,yn) is a right transversal for G; in K. For each i = 1,...,n,
j=1,...,dand k =1,...,m we define a;; and b;; € G such that

T Yi%j = QijYe(i,5)s

Y Yivk = bikYy(i k),
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where ¢(3, j) and 9(3,k) € {1,...,n}. Define
HI(K)={H € H'|G1H = K}

and

&= Y K H

HeHY(K)

As in the proof of Theorem B, it suffices to prove the rationality of Cg;(s).
Let
NE)Y= |J N@#H).

HeH(K)
Then
Cam(s)=c f F(g1,.--,9dn)du,
N(K)
where ¢ and F(gi,...,94+n) are defined as in equation (2.5). Thus Theorem

2.15 reduces to proving that N'(K) is definable. Let (hy,...,hq,t1,...,tn) €
N(K). There exists H € H(K) such that (hy,...,hy) is a good basis for
H, = HN G and (t4,...,t,) is a transversal basis for H. Now H is normal
in G if and only if, for each ¢,j =1,...,dand k=1,...,mand [ =1,...,n,
we have

(a) a:;lhia:j € Hy;

(b) y;; thiyk € Hu;

(c) there exists h € H; such that a:j‘ltlealj = hty( j); and

(d) there exists h € H; such that y,:ltlykblk = hty )

Each of the conditions (a)-(d) reduces to a definable formula in L. The
conjunction of these formulae with the formula in £ defining the subset N'(K)
defines the set N'(K)?. Since N (K)® is definable, Cg;(s) is rational in p~5. O

2.3.2. r-Generated subgroups. For each r € N define
H(r)={H <, G|d(H)=r}.

Note that if G is a compact p-adic analytic group, then G has finite rank.
This implies that H(r) is empty for sufficiently large r. We define

Gp(s)= Y IG:H|™
HeH(r)
Then {gp(s) = 3 ,;enCGp(s)- In [M], A. Mann has observed that if G is a
p-adic analytic pro-p-group, these Poincaré series satisfy a simple functional

equation
d

3 (G(8) - Gls =1+ 1) k() = 1,

=1
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where (,(s) = (1—p~*)~! is the local Riemann zeta function and d is the rank
of G. We shall prove the following theorem:

THEOREM 2.16. Let G be a p-adic analytic pro-p-group. Then (7 ,(s) is
rational in p~* for each r € N.

First we shall need some preparatory lemmas. Recall that the Frattini
subgroup of a profinite group is defined by

®(G) = n{M | M is a maximal, proper, open subgroup of G}.

It has the property that d(G) = d(G/®(G)). If G is a pro-p-group, then
®(G) = P,(G) and G/®(G) is an elementary abelian group. Consequently

d(G) = dimg, (G/®(G)).

For the rest of this section we fix the following notation: Let G; be a
normal uniform pro-p-group in the p-adic analytic pro-p-group G and let K
be a subgroup of G with G; < K < G. Let {y1,...,yn} be a transversal for
the right cosets of G; in K such that {yi,...,ys} (s < n) is a transversal for
G1 in Glé(K )

LEMMA 2.17. Let H be a subgroup of G with K = G1H. Then
O(H) = ®(K)G1N[ M | M < H,M; =MNG,
is mazimal in H;, MH, = H}.

Proof. Let M be a maximal subgroup of H. Then either

(i) MGy = L, a maximal subgroup of K and M NG = Hy, or

(i) MH; = H and M N G; = M, a maximal subgroup of H;.
If G; < L € K and L is maximal in K, then M = LNH is a maximal subgroup
of type (i) in H. Thus the intersection of maximal subgroups of type (i) is
®(K)G1 N H. Intersecting these with the maximal subgroups of type (ii), we
have the desired result. O

LEMMA 2.18. There exists a formula ¢(X,Y) in Lg such that ¢(x,y) is
true if and only if x is a good basis for a subgroup H of G; and y is a good
basis for a mazximal subgroup M of H.

Proof. Let 8(X) be the formula ensuring that x is a good basis for some
subgroup. If x and y are good bases for the subgroups H and J, then J C H
provided that for each i = 1,...,d there exists (A1,...,\g) € Zg such that

— A Ad
yi =zp -zl
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Let o(X,Y) be this statement. Define the formula 7(X,Y) by
(for all Z)(6(Z) Ao (Z,Y) Ao (X,Z) - 0(Z,X) Va(Y,Z)).

Then
(X, Y)=0X)AN0(Y) Ao (X, Y)AT(X,Y). O

LEMMA 2.19. For each i = 1,...,n there exists a formula ®;(X,Y, Z)
with the property that ®;(hi,...,hqg,t1,...,ts,2) is true if and only if

(i) (h1,-...,hg,t1,...,ts) is a basis for some subgroup H € H(K); and

(ii) zy; € ®(H).

Proof. If 1 ¢ {1,...,s}, then take ®;(X,Y,Z) to be any contradic-
tion. Suppose that ¢ € {1,...,s}. Let 6(X,Y) be the formula provided by
Lemma 2.12 with the property that 8(hi,. .., hg,t1,...,ts) is true if and only if
(h1,...,ha t1,...,ts) € N(K). We first require a formula x(X,Y, U, V) with
the property that x(x,y,u,v) is true if and only if (x,y) is a basis for a
subgroup H and (u, V) is a basis for a subgroup M of H with the property
that M; = M N G; is maximal in H; and MH, = H. Let a(X,Y,V) be
the formula in Lg defining when Hyy; = Hyv; for i = 1,...,n. Then x is a
conjunction of the following formulae:

(i) 6(X,Y);

(i1) 8(U, V);

(iii) ¢(X,U); and

(iv) a(X,Y, V).

Let B(X,A) be the statement expressing the fact that there exists
(A,y---, M) € Zg such that

a= a:’l\‘ ---a:(’i\d.
So the formula ®;(X,Y, Z) we want is
(for all (U, V)) (x(X,Y,U,V) - 8(U,(Z-V1)). O

LEMMA 2.20. There exists a formula Qg (X,Y) with the property that
Qg (hi, ..., ha,t1,...,ts) is true if and only if

(i) (h1,-.-,hg,t1,...,ts) is a basis for some subgroup H € H(K); and

(ii) d(H) = .

Proof. Let y1,...,y, be a transversal for G; in K. Let i = (74,...,i,) €
{1,...,n} and a = (a1,...,0r) € {0,...,p — 1}". Then there exist (i, ) €
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{1,...,n} and a definable function F;4(Xj,...,X,) in Lg such that, for all
g1y---,9r € Gla

(919i)™ -+ - (9r%3,)* = Fia(91,- - - 9r)Ye(i,a)-

For i,5 € {1,...,n}, define (3, j) € {1,...,n} and ¢;; by ¥i(y;)™" = cijYx(i,)-
Now (hy,...,hq,t1,...,t,) satisfies conditions (i) and (ii) provided that

(there exist Ay, ..., A, € ZZ)

( V (foralluezg A ( \

ie{1,...,n}" je{1,...,n} a€f0,...p—-1}
q’n(e(i,a),j) (h7 t, y]"_I (h(u)tj)—lpi,a (h(Al), ceey h(AT))yjce(i,a)j))) ) .

This is a definable formula in L. O

Proof of Theorem 2.16. Again we only have to prove for each subgroup

K > G that K
Ga®)= > |K:H|*
HEH(K )

is rational in p~*, where H(K,r) = {H € H(r) | G1H = K}. Let
NEKY= | N@H).
HeH(K,r)
Then
I A,
N(K)"

where ¢ and F(g1,...,9ga+n) are defined as in equation (2.5). By Lemma 2.20,
N(K)" is a definable subset. So Cg’ ’;(s) is a rational function in p~*. O

2.3.3. Conjugacy classes. Define C(G) to be a set of representatives for
the conjugacy classes of subgroups of finite index in G. Define

ay(G) = card{H € C(G) | |G : H| = n}.
In this subsection we consider the following Poincaré series:
&p(8) =D an(Gp™.
neN
THEOREM 2.21. If G is a compact p-adic analytic group, then (g,p(s) is

a rational function in p~°.

Proof. To prove this theorem we rewrite our Poincaré series using the
fact that the number of subgroups in the conjugacy class of H is |G : Ng(H)|.
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Thus
¢&p(s)= Y |G: H|™*|G: Ne(H)|™
H<,G
= > IG:K|™*|G:LI™" ) |K:H[*|L:Ng(H)|™
G1<K<,L<,G HeH(K,L)
= Y (G:K[IG: LI P(s),
G1<K<,L<,G

where H(K,L) = {H | HG1 = K and Ng(H)G; = L}. Now

g,f L)(s) (/ Fl(gla ,gd+n)dll/

HeH K,L)
/ F(g1,- .. ,gd+n)d/t),
N(Ng(H))

Fi(g1,.--)9d4n) = cp—sh(gl,.--,gd+n)+k(gl,~--,gd+n),

where

Fy(g1, .-+ 9dsn) = Cp—h(gl,--~,gd+n)+k(gl,---,gd+n),

and h and k are defined as in equations (2.3) and (2.4) and c is defined as in
(2.5). So we have

KL) (s) = /Fl(gl, -y 9a+n)F2(91, - - . 5 9an)dp,

where X = Upgewk,r) N(H) X N(Ng(H)). The rationality of (g ,(s) then
reduces to the question of whether X is definable.

Fix a good basis (z1,...,z4) for G; and a right transversal (y1,...,Yn)
for G; in G with the property that (y1,...,¥s) (resp. (¥1,---,%)s Y15---3Ym))
is a right transversal for K (resp. L, Ng(H)) in G. We define a;j, b, (%, )
and 9(i, k) as in Theorem 2.15.

Now ((h1,...,ha,t1,...,ts), (k1,-..,ka,w1,...,w;)) € X if and only if

(i) (h1,.--,h4,t1,...,ts) and (ki,...,kq, w1,...,w;) are bases for some
subgroups H and M, respectively; and if H; = H N Gy, then

(ii) k;'hikj € Hy (i,5 =1,...,d);

(iii) yj"le“lhiwjyj €H, (i=1,...,dand j=1,...,1);

(iv) there exists h € H; such that

(t=1,...,sand j=1,...,d);
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(v) there exists h € H; such that
(5 wj tiwsg)yy " (g (wiw ) ¥ibis = htyG)

(t=1,...,sand j=1,...,1);
(vi) for j =1+1,...,m we have, for all x € Gy, there exists h € H; with
the property that, for some i = 1,..., s, there does not exist ' € H; such that

(v; & htizy; )yt (27 (viey; 1)) yibig = Bty )

(vii) for j = 1,...,1, if x € G; has the property that, for all h € H; and
each i =1,...,s, there exists A’ € H; such that

(y; ' htizy;)y; (27 (iwy; 1)) yibis = W'ty ),
then there exist Ay, ..., Aq € Z, such that
T=k}M... k:}"wj.

Conditions (ii)-(iv) ensure that H is normal in M and conditions (vi) and
(vii) ensure that M contains every element that normalizes H. Each of these
conditions is definable in L¢; hence, C&p(s) is a rational function in p~%. O

3. Finitely generated groups

Let T' be a finitely generated group. Then a,(T') is finite for all n >
1. By forming the pro-p-completion f‘p of I', we may employ the results of
the previous sections to deduce rationality results for various Poincaré series
associated with I'. The lemma below is basic and describes how much the
pro-p-completion can tell us about subgroups of finite index in T.

Let C(T") be a set of representatives for the conjugacy classes of subgroups
of finite index in I". Define

a;(T)=card{H <T ||I': H| =n and H is subnormal},
an(T)=card{H <T ||I': H| =n and H is normal},
a(T) =card{H € C(T) | T : H| = n and H is subnormal}.

LEMMA 3.1. (i) a;a(T) = apn(f‘p);
(i) a5 (T) = a5 ()
(iii) agn(T) = ag(Ip).

Proof. For part (i) let G = I',. Fix n and let A be the intersection of
all subnormal subgroups of index p™ in I'. Then I'/A is a finite p-group, by
an elementary argument, so that I'/A is isomorphic to a quotient group of

G. Hence a;» (') = apn(I'/A) < ap2(G). On the other hand, if H denotes the
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intersection of all (necessarily open) subgroups of index p" in G, then G/H is a
finite p-group, and so G/ H is isomorphic to a quotient of I. As every subgroup
of G/H is subnormal, this implies that ay(G) < aj-(G/H) < aja(T). This
proves part (i). Parts (ii) and (iii) follow by the same argument. a

THEOREM 3.2. Let T be a finitely generated group and p a prime. Sup-
pose that agn (T") grows at most polynomially with p™. Then

(1) G p(8) = Xonew apn(D)p™" is rational in p=%;

(ii) ¢&,(8) = 2onenapn(I)p™™° is rational in p~*; and

(iii) ¢F,(s) = 2sen apn (D)p™™* is rational in p~°.

~

Proof. By Lemma 3.1, ax»(I',) grows at most polynomially. By [LuM2],
Theorem 3.1, or [DxduSMS], Theorem 3.19, f‘p is a p-adic analytic pro-p-
group. The theorem then follows from Lemma 3.1 and Theorems A, 2.15
and 2.21. O

Parts (ii) and (iii) of the theorem are slightly unsatisfactory, since we
would prefer a condition about the growth of ag.(I') and ag (T'). At present it
is still an open problem to characterize pro-p-groups for which a3, (G) grows
polynomially. Such groups include pro-p-groups G of finite width, i.e., those
pro-p-groups for which there is a bound on the rank of central sections of
G. This is a wider class of groups than p-adic analytic groups. For example,
the class of analytic groups over F,[[t]] has finite width, as does the so-called
Nottingham Group (see [Y] for details), a pro-p-group, which is thought not
to be analytic in either sense.

Question. Does finite width characterize the class of pro-p-groups for
which a5 (G) grows polynomially?

Let I be a finitely generated, residually finite p-group. Then aj-(T") grows
at most polynomially if and only if fp is a p-adic analytic pro-p-group if and
only if there is a bound on the rank of all finite p-quotients of I'. This class
of groups is a subclass of all linear groups over Z, (see [DxduSMS]|, Thm. 6.3).
However it is not clear which linear groups are characterized by this condition.
For instance, if we consider I' = SL2(Z), then I' contains a residually finite
p-subgroup Iy of finite index for which a3.(I'g) grows faster than polynomially.
By Theorem 6.39 of [DxduSMS], the class of groups I' for which f‘p is a p-
adic analytic pro-p-group includes the arithmetic groups with the congruence
subgroup property and strong approximation. In a sequel [duS2] we shall
use Guralnick’s classification of subgroups of prime-power index in simple
groups (cf. [Gu]) together with Shorey and Tijdeman’s work on exponential
diophantine equations (cf. [ShT]) to prove that the Poincaré series, counting
all subgroups of p-power index in such groups, is rational in p~°. We do this
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by identifying a compact p-adic analytic group, whose subgroups of p-power
index are in one-to-one correspondence with the subgroups of p-power index
inside the arithmetic group.

In the next theorem we describe another class of groups for which we can
identify such a compact p-adic analytic group. Recall that

(i) a chief factor of T is a section M/N, where N is a normal subgroup
inI" and M/N is a minimal normal subgroup of I'/N, and

(ii) an upper p-chief factor of I is a chief factor of some finite quotient
of I', whose order is divisible by p.

THEOREM 3.3. Let I be a finitely generated group and p a prime. Let
To =g Cr(S), where S ranges over all upper p-chief factors of T'. Suppose
that

(i) the orders of all upper p-chief factors of I' are bounded, and

(i) agn(To) grows at most polynomially with p".

Then (rp(s) is rational in p~°.

Proof. Since the orders of all upper p-chief factors of I' are bounded and
T is finitely generated, 'y is a characteristic subgroup of finite index in T.
Let H be a subgroup of I'g of p-power index. Let K; be the largest normal
subgroup of I" contained in H and let K3 be a normal subgroup such that
K3/K; is a chief factor of I Then K3 = KoH 2 H. Since H has p-power
index in Ty, the order of K3/Kj is divisible by p. Thus K2/K] is centralized
by I'o. This implies that H < K3, since if £ € K2 and h € H, then

h* = hlh,k] € HK, < H.

Thus, by iterating this argument, we can prove that H is subnormal in Ty.
Let G = (llﬂ N4, ['/N and Gy = (}_lﬂ N<,To To/N. By supposition (ii)
and Theorem 3.19 of [DxduSMS]|, Gy is an analytic pro-p-group. As G is
a finite extension of Gy, it is also a compact p-adic analytic group. The
group G has the property that ay(I') = ay»(G). So Theorem 3.3 follows from
Theorem B. O

Definition 3.4. The upper p-rank of T is defined to be the supremum of
r(P) as P ranges over all p-subgroups of finite quotients of T.

THEOREM 3.5. If T is a finitely generated group with finite upper p-rank,
then (rp(s) is rational in p~°.

Proof. If H is a subgroup of finite index in I', then it also has finite
upper p-rank. This implies that a;.(T'o) grows at most polynomially in p"
by the remarks following Theorem 3.2. From Proposition 6.12 of [DxduSMS]
there exists a normal subgroup I'; of finite index in I with the property that
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every finite quotient of I'; has a normal p-complement. (Recall that a normal
p-complement in a finite group H of order p"m, where p { m, is a normal
subgroup of H of order m.) It suffices to prove that every upper p-chief factor
S = M/N of T with N < M <T; has bounded order. Let K/N be a normal
p-complement for I';/N. Since |M/N]| is divisible by p, KN M < M. Thus
MPIM,M] S M. But MP[M,M]<T. So M/N is an elementary abelian p-
group of bounded rank, since I" has finite upper p-rank. It follows that the
order of all upper p-chief factors of I' is bounded and, hence, {r ,(s) is rational
in p~° by Theorem 3.3. a

For the class of finitely generated, residually finite groups I" of finite rank
note that (rp(s) is rational in p~® for all primes p. This class of groups
is precisely the class of finitely generated, residually finite groups for which
an () grows at most polynomially, namely the class of virtually soluble groups
of finite rank (see [LuM1}, [LuM2]). However we shall show in [duS2] that there
are many groups outside this class for which {r,(s) is rational in p~* for all
primes p.

ALL SouLs COLLEGE, OXFORD, ENGLAND
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