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Annals of Mathematics, 137 (1993), 639-670 

Finitely generated groups, p-adic 
analytic groups and Poincare series 

By MARCUS P.F. DU SAUTOY 

Introduction 

Let G be a group and denote by an(G) the number of subgroups of index 
n in G. We shall only be interested in groups for which an (G) is finite for 
each n > 1. To each prime p and group G we can then associate the following 
Poincare series: 

00 

(G,p(S) = E apn(G)p-ns. 
n=O 

In this article we are concerned with the following question: 

Question. For which groups G and primes p can (G,p(s) be written as a 
rational function in p-8? 

This is equivalent to the coefficients apn(G) satisfing a linear recurrence 
relation with constant coefficients for sufficiently large n. 

These Poincare series were first studied in the case when G is a finitely 
generated, torsion-free nilpotent group in a paper by Grunewald, Segal and 
Smith [GSSm]. There the authors established that, for such a group, (G,p(s) 
is a rational function in p8s. In that setting the functions (G,p(S) are the local 
factors associated with the Dirichlet series 

00 

(G(s) = Zan(G)rnr 
n=1 

and (G(s) is equal to the product of these local factors. However this "Euler 
product" decomposition does not appear to generalize to the case of non- 
nilpotent groups. 

In this article we show how integrals with respect to the Haar measure 
on a pro-p-group can be used to deduce the rationality of our Poincare series 
from some very general finiteness conditions on a group G. 

This generalizes the philosophy introduced by Igusa ([Ii], [I2]). He showed 
how to express Poincare series associated with p-adic varieties as integrals 
with respect to the additive Haar measure on Zp. Applying techniques from 
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geometry, in particular Hironaka's resolution of singularities, one can evaluate 
a limited class of such integrals as rational functions in p-8. More recently 
Denef and van den Dries ([D1], [D2] and [DvdD]) have applied results from 
logic, profiting from the flexibility of the concept "definable", greatly to enlarge 
the class of integrals amenable to Igusa's method. In subsection 1.1 we describe 
the class of integrals considered by Denef and van den Dries. 

In subsection 1.2 we consider integrals of the following form, defined with 
respect to the Haar measure dpt on a pro-p-group G: 

Z(h, k, Ml, s) = sh(gj. 9g)-k(g)... r)dp; 

where M C G x * x G = G(r) and h, k : G(r) , Z. We define a twosort 
language LG associated with the class of pro-p-groups--the first sort ranges 
over elements of the group G and the second sort over the p-adic integers 
allowing us to define the natural action of Zp on a pro-p-group. We also 
have a twoplace predicate, which defines the lower p-series Pi (G) on G, where 
Pi (G) = G and Pj+j (G) = Pi (G)P[Pi (G), G]. The key technical result of this 
article concerns the case where G is a uniform pro-p-group-that is, a finitely 
generated pro-p-group with the property that 

(i) G/GP (or G/G4 if p = 2) is abelian, and 
(ii) IG: P2(G)I = IPj(G) : Pj+i(G)I for each i > 1. 

THEOREM A. Let G be a uniform pro-p-group and M, h and k be as 
above. If M is definable in CG and the functions h and k are constructed 
from definable functions in 1G, then Z(h, k, M, s) is rational in p-8. 

A more detailed statement of this result can be found in Theorem 1.17. 
The key ingredient in the proof of this theorem is one half of Lazard's solution 
to the p-adic version of Hilbert's fifth problem. He showed how to define a 
natural manifold structure on a uniform pro-p-group G (or p-saturable group 
in the terminology of his 1965 paper [L]) with respect to which the group 
operations are analytic; i.e., such a group G is a p-adic analytic group. We show 
here that the natural action of Zp on G is also defined by analytic functions. 
Using this structure on G, we show how to translate the definable group- 
theoretic integrals Z(h, k, M, s) into the integrals of subsection 1.1 considered 
by Denef and van den Dries. 

In Section 2 we use the rationality results of Section 1 to prove the fol- 
lowing theorem: 

THEOREM B. Let G be a compact p-adic analytic group. Then (G,p(s) is 
a rational function in p-8. 

In fact our techniques allow us to deal with the Dirichlet series counting 
all subgroups associated with a compact p-adic analytic group: 
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THEOREM C. Let G be a compact p-adic analytic group. Then there exist 
an integer N and rational functions eJn (X) for each divisor n of N such that 

(G (S) = n-81N(p-s) 
nJN 

(Note that, although in the context of profinite groups it is more natural to 
count just open subgroups, in the situation of Theorems B and C all subgroups 
of finite index are in fact open.) 

We prove also that Theorem B is the best possible one in the case of 
a pro-p-group G-namely that the rationality of (G,p(s) implies that G is a 
p-adic analytic group. 

The proofs of Theorems B and C rely on the second half of Lazard's 
solution to the p-adic version of Hilbert's fifth problem-that is, every com- 
pact p-adic analytic group contains an open uniform subgroup. We begin 
in subsection 2.1 by showing how to express the Poincare series, counting 
subgroups in a uniform pro-p-group as one of the definable group-theoretic in- 
tegrals of subsection 1.2. In subsection 2.2 we then show how to extend these 
integrals to count subgroups in finite extensions of our uniform pro-p-groups. 
In subsection 2.3 we prove rationality results for variants of our Poincare 
series where we count only normal subgroups (subsection 2.3.1), regenerated 
subgroups (subsection 2.3.2) and finally the number of conjugacy classes of 
subgroups (subsection 2.3.3). 

In Section 3 we apply the results of Section 2 to prove rationality results 
for the Poincare series associated with finitely generated groups satisfying some 
very general finiteness conditions. The philosophy behind the proofs in that 
section is to identify a compact p-adic analytic group, whose subgroups are 
in one-to-one correspondence with subgroups we wish to count in our finitely 
generated group. 

The pro-p-completion of an abstract group gives us access to counting 
only subnormal subgroups of p-power index. In particular, using Lubotzky 
and Mann's criterion in terms of polynomial subgroup growth for a pro- 
p-group to be analytic (see [LuM2]), we prove the next theorem: 

THEOREM D. Let r be a finitely generated group, p a prime and denote 
by an(F) the number of subnormal subgroups of index n in r. If apn (r) grows 
at most polynomially with respect to pn, then 

04 (s) = n ap(r)p-ns 
nEN 

is rational in p-s. 
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However, under suitable finiteness conditions on a group F, we can iden- 
tify a subgroup FO of finite index, all of whose subgroups of p-power index 
are subnormal. By extending the pro-p-completion of this group FO by a fi- 
nite group, we can construct a compact p-adic analytic group G having open 
subgroups corresponding to all subgroups of p-power index in F. This ap- 
proach allows us to prove the following theorem (the upper p-rank of F is the 
supremum of the ranks of all p-subgroups of finite quotients of F): 

THEOREM E. Let p be a prime and let F be a finitely generated group 
with finite upper p-rank. Then Cr,p(s) is rational in p8s. 

An announcement of some of the results contained in this article appeared 
in [duSi]. 

In a sequel [duS2] we apply the philosophy of Section 3 to the problem of 
counting congruence subgroups in arithmetic groups. As a corollary to that 
we mention the following result: 

THEOREM F. Let F be an arithmetic lattice inside G = SLn, where n > 3. 
Then Cr,p(s) is rational in p-8 for all primes p. 

The proof relies on various ingredients, including Guralnick's classification 
of subgroups of prime-power index in simple groups (cf. [Gu]) and the work of 
Shorey and Tijdeman on exponential diophantine equations (cf. [ShT]). Note 
that in Theorem F, ir,p(s) = 1 for almost all primes p. 

Notation. The notation in subsection 1.1 is borrowed from the earlier 
paper by [DvdD]. We have consistently used boldface to denote a tuple (or 
vector) of elements. 

(i) =ii + + iM, where i = (il,...,iM) E NM. 
Xi= X"l... X, where X = (Xj,...,XM) are commuting indetermi- 

nates and i = (il,...,iM) E NM. 
Xn = A... AnyM where A= (A1,...,AM) E ZM and n= (n1,...,tnM) E 

NM. 

H <P G if H is a subgroup of p-power index in G. 
H <up G if H is a normal subgroup of p-power index in G. 
G(r) = G x ... x G, the direct product of r copies of a group G. 
X denotes sets of subgroups. 
M denotes sets of good bases for subgroups. 
jK denotes sets of bases for subgroups. 
Mrxd denotes the ring of matrices. 
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1. Rationality of definable integrals 

1.1. Definable p-adic integrals. For r E Qp, Irl denotes the normalized 
absolute value p-v(r), where v(r) = ordp(r). We denote by v the additive Haar 
measure on Zp, so normalized that v(Zp) = 1, and also (by abuse of notation) 
the product measure on free Zp-modules of the form ZM. 

With each pair of functions fi: Z' -* Qp, f2 : Z Qp and the subset 
S C ZM we associate the following function: 

I(fh, f2, Si S) = jl (x)1slf2(x)Idv. 

(Here s denotes a complex variable and x = (xi, . .. , xM) ranges over S.) 
This integral generalizes Igusa's local zeta function (cf. [Ii]). In this sec- 

tion we describe the class of integrals evaluated by Denef and van den Dries 
as rational in p-S. 

Definition 1.1. Let X = (Xi,... ,XM) be M commuting indeterminates 
and let Qp[[X]] denote the set of formal power series 

Z aiXl1 ... Xzm 
jENM 

in the commuting indeterminates, where ai e Qp. We define the following 
subsets of Q?p[[X]]: 

(i) Zp[[X]] denotes the set of power series E aiXi with ai e Zp for all 
i E NM; 

(ii) Qp{X} consists of all formal power series E aiX' such that aia I -? 0 
as (i) -oo; 

(iii) Zp{X} = Zp[[X]] n Qp{X}. 
(Here (i) = ii + + iM, where i = (i,..., iM).) 

Definition 1.2. Let V be a nonempty open subset of ZpM and let f: 
p --~7ZP be a function from V into Zp. We say that f is analytic at y e V 

if there exist a formal power series F(X) E Zp{X} and h e N such that 
f(y + phX) = F(x) for all x e ZpM. We say that f is analytic on V if it is 
analytic at each point of V. 

We shall need the following two lemmas concerning analytic functions. 

LEMMA 1.3. Suppose that fi, .. .fN: ZpM Zpand g ZN Z are 
analytic functions on ZM and ZpN, respectively. Then g a f : 

p 
74is 

analytic on ZMrT. 

Proof. See [DxduSMS], Ch. 9, Lemma 9.4. El 
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LEMMA 1.4. Suppose that F(X) = EiENM aiXl1 ... XM converges on 
some open subset U of ZPM. Then there exists n such that pn(')ai e Zp. 

Proof. See [DxduSMS], Ch. 7, Lemma 7.18. 0 

Definition 1.5. (i) We define the function D: -_ * Zp by 

= xy if Jxly < yI and yO. 
D otherwise. 

(ii) For n > 0 we define Pn to be the set of nonzero nth powers in Zp. 

We define now the language considered in [DvdD]. 

Definition 1.6. Let LD be the language with logical symbols =, , V, A, 
a countable number of variables Xi and 

(i) an m-place operation symbol F for each F(X) e Zp7{X}, m > 0; 
(ii) a binary operation symbol D; and 
(iii) a unary relation symbol Pn for each n > 0. 

Note that if m = 0, then F(X) defines constant terms in our language for 
each element of Zp. 

We refer the reader to [DvdD], ?0, for a self-contained account of the 
notions from logic that we shall use. In particular we have the concept of a 
formula in LD and its interpretation in an LD structure. For our purposes 
we shall only be interested in the structure Zp and then the following shows 
how to interpret a formula in this structure: 

Definition 1.7. Each formula 0q(Xi,... ,XM) in the language LD defines 
a subset 

M= {x e ZpM I 0(x) is true in Zp}, 

where we interpret 
(i) each F e Zp{X} as the function f: ZM -* Zp defined by f (x) = F(x); 
(ii) the binary operation symbol D as the function in Definition 1.5, and 
(iii) Pn(x) to be true if x e Pn, where Rn is the subset in Definition 1.5. 

We call such a subset MO definable (in LID). A function f : V -* 7p is 
called definable if its graph is a definable subset. We shall call I(fi, f2, S, s) a 
definable integral if fit: Z7M - Qp and f2: Z7M -* p are definable functions 
and S is a definable subset of ZM 

THEOREM 1.8. Suppose that I(fi, f2, S, s) is a definable integral. Then 
(i) S is measurable, and 
(ii) I(fi, f2, S, s) is a rational function in p-s, which can be written as a 

polynomial in p-s with rational coefficients, divided by a product of factors of 
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the form (1 - p-a-sb) with a, b E Z. Moreover each pole of I(fi, f2, S, s) has 
multiplicity at most M, where M is the number of variables in I(fi, f2, S, s). 

The reader should consult [DvdD] and [D3] for a proof of this theorem. 
However let us mention the essential steps in the proof. 

(i) Zp admits quantifier elimination in the language LD . This result, due 
to Denef and van den Dries, extends Macintyre's quantifier elimination for 
the algebraic theory of Zp (see [M]). It allows us to decompose the definable 
integral into a finite sum of integrals over sets defined by formulae without 
quantifiers. 

(ii) We then apply a p-adic analogue of Hironaka's rectilinearization the- 
orem to eliminate occurrences of the function D. 

(iii) These much simpler integrals can then be evaluated (a la Igusa) by the 
use of a version of Hironaka's embedded resolution of singularities. In [vdD], 
van den Dries outlines a proof of Theorem 1.8 without using any resolution 
of singularities. 

In the next section we shall define a language for the theory of pro- 
p-groups, which we shall interpret in the language LD. To do this we need 
the following two lemmas: 

LEMMA 1.9. Let f : ZM /ZP be an analytic function. Then f is a 
definable function in LD. 

Proof. For each a e ZM there exist a formal power series p 

F(X) = aX1 ... XM e Q'[[X]1 
icNM 

and h E N such that if x e a + phZM then f (x) = F(x- a). By Lemma 
1.4 there exists n e N such that p(i)nai e Zp for all i E NM. (Note that since 
f(a) e Zp, this ensures that ao E Zp.) Let 

G(X) = S p(i)najX1 ... X E Z[[X]] 
icNM 

and N = max(n + 1, h). If x E a + pNZM, then f(x) = G(D(x- a, pn+1)). 
Since {a + pNZM 1 a E ZMI is an open cover of the compact space ZM, there 
exists a finite cover {ai + pNZM} on which f is given by a definable function 
Gi(D(x -a, pni+l)). Since each of the open subsets is definable, this implies 
that f is definable. El 

LEMMA 1.10. The twoplace predicate defined by v(x) > v(y) is definable 
in LD. 
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Proof. An application of Hensel's lemma implies that for all x, y e Zp 

v(x) > v(y) if and only if f = oor y ?+pX2 E P2 if p 2, 
lx=O0or y2?+8X2 EP2 if p=2. 

1.2. Definable group-theoretic integrals. In this subsection we define a 
filtered group-theoretic language 1G and a class of integrals over the Haar 
measure of a group that can be evaluated as rational functions. Although 
there is not much content beyond translating these integrals into the integrals 
considered in the previous section, we do provide a more convenient setting 
for the proofs to come in the latter half of this article. 

Let G be a pro-p-group. Then G admits a natural action of Zp as detailed 
in the following: 

Definition 1.11. Let A e Zp and g e G. We define 

9A = lim gan, 
n--+oo 

where (an) is a sequence of rational integers with limn oo an = A. (It is a 
straightforward exercise to show that this is well defined.) 

The following series of (topologically) characteristic subgroups associated 
with a pro-p-group G will be of importance to us: 

Definition 1.12. Let G be a pro-p-group. We define the lower p-series in 
G to be {Pi(G) I i > 1}, where Pi(G) = G and Pi+1(G) = Pi(G)P[Pi(G), G]. 
(Here H denotes the topological closure of the set H in G.) Define w: G 
N U {oo} by w(g) = n if g E Pn(G) \ Pn+l (G) and w(1) = x0. 

Note that P2(G) is the Frattini subgroup of G. If G is finitely generated 
(topologically), then the minimum number of topological generators for G, 
denoted by d(G), is dimFp G/P2 (G). We now associate a twosort language to 
the pro-p-group G. (A twosort language is a language with two distinct sets 
of variables called sorts. We must then specify on which sort a function or 
predicate in the language is defined. An interpretation of such a language 
entails naming two domains over which the two sorts range.) 

Definition 1.13. Let 1G be the language having two sorts x and A. We 
have constant symbols in the sort x, for each element of the pro-p-group, 
together with a binary relation symbol xly on the sort x x x. We have the 
following function symbols, which all define elements in the sort x: 

(i) a binary function symbol x.y on the sort x x x; 
(ii) a unary function symbol x-1 on the sort x; 
(iii) a binary function symbol xA on the sort x x A; 
(iv) a class of unary function symbols q on x. 
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We construe a pro-p-group G as an CG structure by allowing the sort x 
to range over G and the sort A to range over Zp. The interpretation of the 
function symbols is clear, apart from the class in (iv), which we shall interpret 
as specific automorphisms of our group G. The symbol xly will be interpreted 
as the relation w(x) > w(y). 

Definition 1.14. We shall call a subset M C G x ... x G = G(r) definable 
if there exists a formula /(xl,...,xr) in CG with r free variables of sort x 
such that 

M = {(gi, gr) I ?,(gi*. .1 gr) is true in G}. 

A function is called definable if its graph is definable. 

Let pu be the normalized Haar measure on G and (by abuse of the notation) 
the product measure on G x ... x G G(r). Let M be a definable subset of 
G(r) and hi and k3 be definable functions (i = 1, . . . Im and j = 1,... ,rn). We 
shall consider the following integrals 

Z(h, k, M, s) = Ipsh(g1M fir)-k(g1M9r)dp 

where h: M -- Z and k: M -Z are defined by 

h(gl,..., gr) = blu(hi(g*,...,g r)) + + 6m(hm(gil ... r)) 

k(gi, r .Ig) = eiw(ki(gi, r. . , )) + + cnW(kn(91, ..90) 

and bi, ej E Z. We describe a class of pro-p-groups for which this function is a 
rational function in p-s. 

Definition 1.15. A pro-p-group G is uniformly powerful, or just uniform, 
if 

(i) G is finitely generated; 
(ii) G is powerful-that is, G/GP (or G/G4 if p= 2) is abelian; and 
(iii) for all i > 1, 

IPi(G): Pi+l(G)l = IG: P2(G)I. 

Lazard called such groups p-saturable; for a detailed account, see 
[DxduSMS], Ch. 4. These groups were the key to his characterization of com- 
pact topological groups with the underlying structure of a p-adic analytic 
group-the p-adic version of Hilbert's fifth problem (see [L] or [DxduSMS], 
Ch. 9). 

THEOREM 1.16. A compact topological group has the structure of a 
p-adic analytic group if and-only if it contains an open normal subgroup that 
is a uniformly powerful pro-p-group. 
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We use Lazard's work on the analytic structure of uniformly powerful 
pro-p-groups to prove the following: 

THEOREM 1.17. Let G be a uniformly powerful pro-p-group and let 
,.. ,4t be automorphisms of G. Suppose that M is a definable subset and 

hi and kj are definable functions (i = 1,... ,m and j = 1,.. .,rn) in ?G, 
where the function symbols 01,... , Ot are interpreted as the automorphisms 
1, * * *, kt. Then Z(h, k, M, s) is a rational function in p-' (where h : M -) Z 

and k : M -? Z are defined above). 

We begin the proof with the following: 

THEOREM 1.18. Let G be a uniformly powerful pro-p-group with d(G) = 
d. Let {X1, ... ,Xd} be a (topological) generating set for G. 

(i) For each x E G there exist unique Al,... ,Ad E Zp with the property 
that 

X = 1 A ... Xd X(A), say. 

(ii) The function f : Zd X Zd -* Zd defined by 

X P\) (X 1))- x(f(q ,i)) 
is an analytic function. 

(iii) Let q be an automorphism of G. The function (p: Zd , Zd defined p p 
by 

x(A)+ = x(O(A)) 

is an analytic function. 
(iv) If x = x(A) E G, then w(x) = min{v(Ai) + 1 1 i = 1, ... , d}. 

Part (i) provides us with a global coordinate system with respect to which, 
by part (ii), the group operation is analytic. Thus the group has the structure 
of a p-adic analytic group. The proof of (i) follows by succesively approx- 
imating the element x with respect to the filtration {Pi(G) I i > 1}. We 
shall apply a similar argument when we consider subgroups of G. Part (ii) 
is proved by using the completion of the group ring Zp[G] with respect to a 
filtration induced from the lower p-series on G. Part (iii) follows from the fact 
that the analytic structure on the uniform pro-p-group G defined in (i) is the 
unique analytic structure that makes G into an analytic group. Part (iv) is a 
consequence of the fact that, for a uniform pro-p-group G, the pth power map 
x xP induces an isomorphism 

fi : Pj(G)/Pj+j(G) --P+(G)1Fi+2(G), 

where if x = x(A) E Pi(G), then fj(x(A))Pj+j(G) = x(pA)Pi+2(G). 
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For proofs of these statements we refer the reader to Lazard's original 
paper [L] or to Chapters 4 and 8-10 of [DxduSMS]. 

This theorem is the key to interpreting filtered group-theoretic statements 
in the language CD described in subsection 1.1. We shall also need the fol- 
lowing lemma: 

LEMMA 1.19. The function g Zd X Z7 - Zd defined by 

X(A), = x(g(A,,u)) 

is an analytic function on Zd X Z. 

Proof. By part (ii) of Theorem 1.18, for each i = 1, ... ,d, there exist 
aimn E Qtp such that for all A, p E Zd 

f (A, tt) = E aimnAml ... A ... 

(m,n)EN2d 

By Lemma 7.19 of [DxduSMS] there exists k E N such that for each i = 1, ... ,d 
and (m, n) E N2d 

aimn = Pk((m)+(n))ajmn E Zp. 

We shall prove that the function g: pk+2Zp X pZ, p is analytic. By Lemma 
10.2 and the proof of Proposition 10.1 of [DxduSMS] there exist power series 

Oij (X)= E CijnX1 *** Xnd E Z [[X]] 
nENd 

for i = 1, ... , d and j > 1, with the property that cijn = 0 for (n) < j and, for 
each A E pk+2Zd and w E ZP) 

( E (II))j(PkA). 

Define vjm E Q by (8) = ZmEn Vjmtm. Suppose now that A E pk+2Zd and 
p E pZp. Then 

gi(A, A/) ( z (zCijnjmlm(Pk A))) 
j=1 mEN nErd 

If we can prove that 

(1.1) (j mli)ESd+2 
l 

Cijn/jm/m (P >k)ni = 0, 
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then by Proposition 7.11 of [DxduSMS] 

gi (A A) = mnA 

(mn)ENd+l 

where c' = .j??n1 Cjj~vjmp-(f)k; i.e., g is analytic on p(k+2)zp x pZP. 
To prove equation (1.1) note that Ivjml < Ij!l < p(j-1)/(P-1) by Lemma 

7.21 of [DxduSMS]. So for all j and m 

|Cijn~jmwm~p-x)n |< p(j-l)/(p-1) . p-2(n) 

Since ci3n = 0 for j > (n), we have lim(n)O, 1Cijn jmAm(p-kA)nj = 0 uniformly 
in j and m. It suffices now to prove that, for (n) fixed, 

lim 1CijnVjm/m(P kx)ni = 0. 
j+m--oo 

But this follows from the fact that ci3n = 0 for j > (n) and 

|CijnVjm/m(p-kAX)nj < Op-m 

for some constant 0. Thus equation (1.1) holds. 
If a E Z, then ga -+ Zp , defined by 

X(>) = X(ga(A) ), 

is analytic. We finish the proof of our lemma by proving that, for each a E Z, 
X (a +pk+3Zp) p is analytic. Now 

(1.2) X(A)apk+31 = X(ga (A)) - X(gpk+2 (A))P'. 

But gpk+2(A) E pk+2Zd. Since compositions of analytic functions are analytic, 
equation (1.2) implies that g is analytic on Z4d X (a + pk+3zp) for all a E Z, 
i.e., g is an analytic function on Z7d X Z7. [ 

LEMMA 1.20. Let G be a uniformly powerful pro-p-group with d(G) = d 
and let {X1,... ,Xd} be a topological generating set for G. Define 

O: Mrxd(Zp) G x x G = G(r) 

by +(M) = (x(mi),... , x(mr)), where mi denotes the ith row of the matrix 
M E Mrxd(Zp). 

(i) 4 is a homeomorphism. 
(ii) If X C G(r) is definable in CG, then +-1(X) is definable in L2n. 

(iii) X is a measurable subset if and only if +-1 (X) is a measurable subset 

of Mrxd(Zp). In this case, ,a(X) = v(o- (X)). 

Proof. Part (i) follows from Theorem 4.9 of [DxduSMS]. Part (ii) is a 
consequence of Theorem 1.18 and Lemma 1.19 together with Lemmas 1.9 and 
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1.10. We prove part (iii) as follows: The additive Haar measure v on Zd defines 
a measure on G. The measure v induces a measure on G/G,+,, which coincides 
with the measure induced by At on G/G,+,. By Bourbaki's Integration VII 
([B], ?1.6), this implies that the measures v and At coincide on G. From this 
part (iii) follows. M 

Proof of Theorem 1.17. Fix a topological generating set for G. Let S C 
Mrxd(Zp) be the set of matrices M such that 

(x(mi), - . ,x(mr)) e M, 

where mi denotes the ith row of M. Then, by part (ii) of Lemma 1.20, S is 
definable. We define the functions Hi : S _ Ed and Kj: S _ Ed (i = 1, ... . M 
and 1,... ,n) by 

x(Hi (M)) = hi (x(mj), . . .X(Mr)), 

x(Kj(M)) = kj(x(mj),. . . ,x(mr))- 

By part (ii) of Lemma 1.20 the functions Hi and Kj (i = 1,... ,m and j- 
1, ... , n) are definable. 

Define for each j = I,., d 

A. = {a G Ed I v(aj) < v(ai) for 1 < i < j, v(aj) < v(ai) for j < i < d}. 

Then {Aj I j 1,.. ., d} is a partition of Zd into definable subsets. Define 
0: Zd - -7Zp by 0(a) = aj if a E Aj. Since the Aj are definable, 0 is a definable 
function. Then we claim that 

Z(h, k, M, s) j I 0(Hl(M))6. 0(Hm(M))6mIs 

l0(K. (M))** 0(Kn(M))En Idv. 

This follows, since if we define 

MiA = {(gl, .., gr) c A I h(gl,... , gr) = iv k(gi, . . ,9r) =i} 

Sij = {M e Mrxd I 10(Hi(M))6l ... 0(Hm(M))6m p-i 

IO (Ki (M))"l .. (Kn(M)) En I =P-j} 

then Mij = q(Sij) and, by part (iii) of Lemma 1.20 and part (i) of Theorem 
1.8, AL(Mij) = v(Sij). The result then follows from part (ii) of Theorem 1.8. C 

Although we have seen that the rationality follows simply by translating 
our group-theoretic integrals to the definable integrals of subsection 1.1, it 
would be interesting to see whether a suitable group-theoretic language can be 
devised that admits quantifier elimination for our uniform groups. Combined 
perhaps with some cell-decomposition theorem, we could then evaluate these 
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integrals within the context of the language of group theory, with the hope 
that some group-theoretic interpretation can be given to the rational functions. 
Some hope for such a cell decomposition may arise from the connections with 
0-minimal sets, p-adic analytic groups and such a cell decomposition. As we 
shall see later, we are unable at present to get much control of the rational 
functions. 

2. p-adic analytic groups 

We defined in the Introduction the following Poincare series associated 
with a group G and prime p 

00 

(G,p(s) = Zapn (G)p-ns 
n=O 

where an(G) denotes the number of subgroups of index n in G. We prove 
in this section that if G is a compact p-adic analytic group, then (G,p(s) is a 
rational function in p-s. We shall prove this in two stages. In subsection 2.1 we 
consider the special case in which G is a uniformly powerful pro-p-group. We 
show how to express (G,p(s) as a definable integral in CG. We can then apply 
Theorem 1.17 to deduce the rationality of (G,p(s). In subsection 2.2 we show 
how to extend the integral considered in subsection 2.1 to count subgroups in 
a finite extension of a uniformly powerful group and then appeal to Theorem 
1.16 to deduce Theorem B. We also point out that Theorem B is the best 
possible for the class of pro-p-groups. The section ends with some examples 
calculated by Ilani. In subsection 2.3 we consider variants of our Poincare 
series in which we restrict our attention to counting subgroups with various 
particular properties. 

2.1. Uniformly powerful pro-p-groups. Throughout the rest of this sec- 
tion we fix G to be a uniformly powerful pro-p-group with d(G) = d. We also 
fix a topological generating set {X1,... ,xd} for G. We prove the following 
special case of Theorem B: 

THEOREM 2.1. Let G be a uniformly powerful pro-p-group. Then (G,p(s) 
is a rational function in p-s. 

For each n > 1 we shall set Gn = Pn(G), the nth term of the lower p-series 
of G. Recall that the pth power map x F-* xP induces an isomorphism 

fi : GjGj+j )- Gi+llGi+2, 

where if x = x(A) E Gi, then fi(x(A))Gi+1 = x(pA)Gi+2. Let 7r : Zp -* Fp 
denote the residue map. Define a map for each n > 1 

n : Gn _ iFd p 
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by wrn(x(A)) = (r(p-(n-1)Ai),... ,7r(p-(n- )Ad)): Then wrn is a homomorphism 
with ker rn = Gn+1 

The philosophy behind the proof of this theorem is to express (G,p(s) as 
a definable integral. The key to such an expression is the following definition: 

Definition 2.2. Let H be an open subgroup in G. We define a d-tuple 
(hi, . . , hd) of elements of H to be a good basis for H if 

(i) w(hi) < w(hj) whenever i < j, and 
(ii) setting In = {j I w(hj) = n}, {7n(h) I j E In} extends the linearly 

n-w(h ) 
independent set {1rn(h hj ) I J I U ... U In 1} to a basis for 7rn(H n Gn) 

Remarks. (i) Since fi : GiGi+l* Gi+l/Gi+2 is an isomorphism, the set 

{wrn(h;pw ) | j E IU ... UIn1} is a linearly independent subset of wrn(HnGn) 
(ii) A good basis for G is precisely a minimal topological generating set 

for G. 
(iii) The set In is independent of the choice of a good basis. 

Definition 2.3. If (hi,... , hd) is a good basis for the open subgroup H, 
then define 

e(n, j) = max{n - w(hj), O} 

for each n> land j ,...,d. 

LEMMA 2.4. Let H be an open subgroup with a good basis (hi,... ,hd). 
(i) If h E H, then there exist Al, . . . , Ad E Zp such that 

h = hAl ... hAd = h(A), say. 

(ii) If h = hi1 ... hd , then w(h) = min{w(hi) + v(Ai) I i = 1, .. ., d}. 

Proof. (i) It suffices to define, for each i = 1,... , d and j > 1, Ai(j) E Z 
such that Ai(j) - Ai(j + 1) E pe(ji)Z and 

h h= i* hi...h~d(J) (mod Gj+1). 

We define Ai (j) recursively. Note that, for k > 1, hpe , ...hpd I generates 
HnGk modulo Gk+1. This provides our base step and the key to our recursion. 
Suppose that we have defined Ai(j) for 1 < j < k. Then 

hAl(k1) hd(k1) (mod Gk). 

So for some gA E H n Gk it follows that 
h hAl(k-1) . hAd(k1) (mod Gk) 
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Now there exist ul, .. . ,IAd E Z such that 

-1Pe(k~l ) dp~kd 
gk hl ... hd (mod Gk+l). 

But note that Gk/Gk+l is central in G/Gk+l by the definition of the lower 
p-series. So setting Ai(k) = Ai(k - 1) + pe(k i)Au, we deduce that 

h -hAl (k) ... hd(k) (mod 
Gk+l). 

Thus setting Ai = limjc Ai(j) yields 

h = hAl** hAd 1 d 

(ii) Let h = hAl ... hdd and define n = min{w(hi) + v(Ai) I i = 1, ... , d}. 
Then h E G,. Suppose that h E Gn+. Then wrn(h) = 0. Since 

{ hen(hni) | i E U ... U In} 

is a basis for 1rn(H n Gn), this would imply that v(p-e(n i)Ai) > 1 for each i = 
1, ... , d; i.e., w(hi) + v(Ai) > n + 1. Consequently h ? Gn+l; i.e., n = w(h). D 

LEMMA 2.5. (hi, ... ,hd) is a good basis for some open subgroup of G if 
and only if 

(i) w(hi) < w(hj) whenever i < j; 
(ii) hi =,4 1 for i = 1, ... ., d; 
(iii) {hAl ... hAd I Ai E Zp} is a subgroup of G; and 
(iv) for all A1,-.. ,Ad E Zp, w(h) = min{w(hi) + v(Ai) I i = 1, ... , d}. 

Proof. Lemma 2.4 establishes one half of this lemma. Conversely suppose 
that parts (i)-(iv) hold and let H = {hAl ... h Ad I Ai E Zp}, a subgroup in G 
by part (iii). By part (iv), H n Gk = {hAl ... h Ad I Ai E pe(k'i)Zp}. Thus 

{1rk(hi p) | i E I, U ... U Ik} generates lrk(H n GO). (Note that 7rk(hi) = 0 if 
i E Ij for j > k.) The linear independence of {7rk(h ) I i E Il U ... U Ik} 
is equivalent to the nonexistence of Ai E 7p \ p7p with the property that 
w(h~1p ... h APe(km)) > k, where m = card(1 U U Ik). Since w(hA) = 
w(h) + v(A), the linear independence of this set follows from part (iv). Finally 
we must prove that H is open. By part (ii) there exists n E N (i.e., n = w(hd)) 
such that wrn(H nGO) is a subspace of dimension d. Thus 1rn(HnGO) = 7rn(Gn); 
i.e., H > Gn. D 

LEMMA 2.6. Let (hi, .,hd) be a good basis for the open subgroup H 
in G. Let sn = card In and suppose that h, ..., h' are elements in H with 
h'= h1il ... haidwhere aij e 7p. Then (hi,..., h') is a good basis for H if and 
only if aij E pe(w(hi)j)7/p and, whenever Sn $& 0, then (aij)ijEIn E GLsn (ZP) 
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Proof. The d-tuple (h, ... ., hd) is a good basis for H if and only if 
(i) for each i = 1, ..., d, w(h') = w(hi), and 
(ii) for each n, {wr(h9) I i E In} is a basis for wn(H n G7,) modulo 

7rn(HP n Gn) 
Now w(h9) > w(hi) if and only if aij E pe(w(hi)j)Zp. Condition (ii) holds if and 
only if (7r(aij))ijEIn E GLsn(1FP); i.e., (aij)i,j;sn E GLsn(Zp). This also ensures 
that w(h') = w(hi) and thus proves the lemma. [ 

We associate with each subgroup H of finite index in G the subset M(H) 
of G(d) consisting of all d-tuples (hi, . . . , hd), which are good bases for H. Let 
(hi,... , hd) be a good basis for H and define qi - p(hi)1, which is independent 
of our choice of a good basis. 

LEMMA 2.7. Let H be a subgroup of finite index in G. Then M(H) is 
an open subset of G(d) and 

d 

/-t(M (H)) = (1 _ p ) dl -i. q-1 q 
i-l 

Proof. The subgroup H is open in G so that Gm < H for some m. To 
prove that M(H) is open it suffices to show that for all (hi, .. ,hd) E M(H) 

(hlI, ,h') E M(H), 

where hi = higi and gi E Gm+,. Since 7rn(hi) = 7rn(h') for all n < m, this 
follows from the definition of a good basis for H. Thus M(H) is open and 
therefore measurable. 

We fix a good basis (hi, ..., hd) for H. Since the pth power map induces 
the isomorphism fi: Pj(G)/Pj?i(G) -4 Pj?i(G)/Pi+2(G) for each i > 1, there 
exists a good basis (Y1, ... , Yd) for G with the property that yiq = hi, where 
qi = pw(hj)-1. Define 

4): Md(Zp) , G(d) 

by +(M) = (y(ml), ...,y(md)), where mi denotes the ith row of the matrix 
M e Md(Zp). Let 

A = {(aij) E Md(Zp) I aij E qjpe(w(hi)j)zp 

and, whenever sn i/ 0, then (q -laiJ),,jE1n E GL (7Z)}. 

Then, by Lemma 2.6, +(A) = M(H), where 4 was defined in Lemma 1.20. 
By part (iii) of Lemma 1.20, ks(M(H)) = v(A). For each Sk $& 0 we calculate 
the measure of the block 

Ak = {(aij) E Mskxd(Zp) I i E Ik 

and ai is the ith row of some M E A}. 
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By the definition of e(w(hi),j) we have 

qjpe(w(hi),j) - qj if i < j, 
qi if i> j. 

The measure of GLsk (Zp) is equal to (1 - p-1)Sk . Therefore 

v(Ak)( _ l)Sk qi-i . q-1l q- 1 

iEIk 

Since Ii U ...UIm = {1, ..., d}, A = A x ...x Am and v(X x Y)= v(X) v(Y), 
it follows that 

v(A) = (1 p-l)sl++Sm 171 q .- 1 .... qj1 
iEIjU UIm 

d 

= Tp ~ qi-i . q.-1 . .. q_1 
i=1 

proving the lemma. [ 

Using Lemma 2.7, we can express our Poincare series in the form of a 
group-theoretic integral. We define for each i = 1, ... , d the function fi: 
G(d) -? G by f(91i,... , 9d) = gi. Let H be a subgroup of finite index in G. 
Recall the definition of qi given above Lemma 2.7. For all (hl,.. ., hd) E M(H), 
pw( fi (h I ...hd))-1 qi. Note that 

IG: HI = f IGiH : Gj+iHI =JJIGA : Gi n Gi+HI 
i>1 i>1 

= pw(hi)-1 ... p~w(hd)-1 = ql... qd. 

Define h: G(d) -, N and k: G(d) -_ N by 

h(gl , , 9d) = W(fi(91g, . , 9d)) + + w (fd(g91, ... 9d)) , 

d 

k(gl, , 9d) = Z(2i - 1)w (fi(91,* 9d)) 
i=l 

Then 
d 

IG : H s = (1 _p-1 )-d JJps2i+l1 p-sh(),-.,gd)+k(gl,---,gd)dp 
i=l M(H) 

Defining M = UH<PGM(H) leads to 

d 
(2.1) (G ,(S) = (1 - Pl )-d Jps-2i+l J p-sh(g... ,gd)+k(g ,. . .,9d)d. 

i=1 
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LEMMA 2.8. (a) The functions fi are definable for each i = 1, ... ., d. 
(b) M is a definable subset of G(d). 

Proof. Part (a) follows immediately from the definition of fi. For part 
(b) it follows from Lemma 2.5 that (hi,... , hd) E M if and only if 

(i) w(hi) < w(hj) for i < j; 
(ii) hi 7$ 1 for each i = 1, .. . , d; 
(iii) for all A, it E Zd there exists v E Zp such that 

hl ... hVd =hAl ... A 
.hAdri 1 d 1 d~h hd~ 

(iv) for all A E Zd 

w(h>1 ... hAd) = min{w(h Ai) | i = 1, ... , d}. 

Since hi = fi(hl, .. ., hd) is a definable function, the conjunction of statements 
(i)-(iv) is a formula in 1G defining the subset M. D 

Proof of Theorem 2.1. In equation (2.1) we expressed (G,p(s) as a group- 
theoretic integral. By Lemma 2.8 this integral is definable in ?G. Thus we 
are in a position to apply Theorem 1.17 to deduce that (G,p(s) is a rational 
function in p-'. C1 

2.2. Compact p-adic analytic groups. Let G be a compact p-adic analytic 
group. By Theorem 1.16 there exists a uniformly powerful normal subgroup 
G1 of finite index in G. Let K be a subgroup of G with the property that 
G1 < K. Define 

GKp() E IK: HI-', 
HERH(K) 

where 11(K) = {H < K I G1H = K}. In this part we show how to extend the 
integral constructed in subsection 2.1 to prove the following: 

THEOREM 2.9. (K(s) is a rational function in p-'. 

Theorem 2.9 suffices to prove Theorems B and C, since 

(G,p(S) = Z IG: KI s K 
Gl <K<PG 

(G(S) = S IG: KK s()p(s). 
Gl <K<G 

Throughout the rest of this section we fix a right transversal (Y1i... v yn) for 
G1 in K with Yi = 1 and a good basis (x1,... , xd) for G1. The following 
concept is the key to expressing Kp(s) as a definable integral. 
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Definition 2.10. Let H E 1H(K). We call (t1,... ,tn) a transversal basis 
for H if 

(i) ti E Gi for each i = 1, ... , n, and 
(ii) (tlyl, ... , tnyn) is a right transversal for H1 = H n G1 in H. 

We call (hi, . . . , hd, t1, ... , tn) a basis for H if (hi, .. ., hd) is a good basis for 
H1 = H n G1 and (t1, . . ., tn) is a transversal basis for H. 

With each subgroup H of finite index in G we associate the subset T(H) 
of Gi7) consisting of transversal bases for H. 

LEMMA 2.11. Let H E 1(K). Then T(H) is an open subset of G(n) and 

p(T(H)) = IG1: HiI-n. 

Proof. If we fix a transversal basis (t, . . ., tn) for H, then 

(2.2) T(H) = H1ti x ... x Hltn. 

The coset Hjtj is an open subset of G1 with Haar measure IG1: H11- . The 
lemma now follows from equation (2.2). [1 

Let N(H) = M(H1) x T(H), i.e., the set of bases for H. We define for 
each i = 1 ... , d the function f : G(d+n) G by fA( g, . .,gd+n) = gj. Define 
h: G(d+n) -+ N and k: G(d+n) + N by 

(2.3) h(g1,.**,gd+n)=wJ(fi(g91*,*,gd+n))?+*?w+ (fd(g1,... ,gd+n)) , 

d 

(2.4) k(g, . . ,gd+n) = (2i + n- 1)w (fi (g1*... ,g d+n)). 
i=l 

Then by Lemma 2.11 

JK: HI-' = IG1: Hl'8 
d 

=(1 P )rd P 
s-lnl P-sh(gl,- -,gd+n)+k(gl,-- 9d+n)d. = (1- P~l 

=1 (H 

Defining K (K) = UHEJt(K)N(H) leads to 

d 
K(S) ( 1_-1 r)d fJps-2i+l-n / psh(gl, * 9d+n )+k(9l, 9d+n ) d 

JA/(K) 

(2.5) c F(g., gd+n)dp, say. 

LEMMA 2.12. AJ(K) is a definable subset of G(d+n) 
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Proof. The (d + n)-tuple (hi,... , hd, t1, ... ,tn) E AJ(K) if and only if 
(h1,... ,hd) is a good basis for some subgroup H1 of G1 and the set X = 
H1t1y1 U ... U H1tnyn is a subgroup of G. The set X is a subgroup provided 
that 

(2.6) htiyi(h'tjyj)-1 E X 

for all h, h' e H1 and i,j= 1, ... ,n. Define aij, bi e G1 along with 

7y: {1, ..., n}2 {1,...,n} and 6: {1,...,n}-- {1,...,n} 

by 
YiYj = aijyy(ij), 

1= biyb(i). 

Since G1 is normal in G, it is a straightforward exercise to check that (2.6) is 
equivalent to the following condition 

htiyi(bjy6(j)(t lh'1-))y67))y71lai6(j) = h"ty(i,6(j) 

for some h" E H1. So, by Lemma 2.8 and the above, the set .J(K) is definable 
by a statement in LG, where we include automorphisms in LG for conjugation 
by each transversal element yi. 

Proof of Theorem 2.9. In equation (2.5) we expressed CgK(S) as a group- 
theoretic integral. By Lemma 2.12 this integral is definable in LG. Thus we 
are in a position to apply Theorem 1.17 to deduce that gKP(s) is a rational 
function in p-s. 

For the class of pro-p-groups, Theorem B is the best possible in the fol- 
lowing sense: 

THEOREM 2.13. Let G be a pro-p-group. Suppose that (G,p(s) is a ration- 
al function in p-8. Then G is a p-adic analytic group. 

Proof. By [LuM2], Theorem 3.1, or [DxduSMS], Theorem 3.19, it suffices 
to prove that apn = apn (G) grows at most polynomially with pn. As we pointed 
out in the Introduction, (G,p(s) being rational is equivalent to the coefficients 
apn satisfying a recurrence relation 

apn + Clapn-1 + ... + Ckapn-k = 0, 

where n > 1 and C1,... ,ck are independent of n. It follows that 

Japnl < KC n 
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where K is independent of n and C = icil + ? * + Ickl. Hence 

Iapn I< K(pn)l0~pc; 

i.e., apn grows at most polynomially. a 

We conclude this section with some examples calculated by Ilani [II]. 

Examples 2.14. Let G = SL2(Zp) and denote by G(i) the ith principal 
congruence subgroup 

1 -- G(i) -- G -- SL2(Zp/piZp) -- 1. 

We use the shorthand notation introduced in [GSSm] for the following rational 
functions in p-S: 

Xa= pb-as, P =(1-X ) 1, Zn=PJP ..P. p 

Then 

(G(i),p(S) = CG(i)(S) = Z3- X2i+1P1 X4 P2 P2 + (P + 1)P11P2 

- (X1(p3 - p- 1) _)P 2 

- (1 + XO)tp1). 

2.3. Variations. In this part we study some variants of the Poincare 
series considered in the previous sections. Although we only consider functions, 
counting subgroups of p-power index, clearly we can prove similar results to 
Theorem C for the corresponding global Dirichlet series. 

2.3.1. Normal subgroups. Define 

W = {H <p G I is a normal subgroup in G}. 

We consider the following Poincare series associated with this set of sub- 
groups: 

(<lp (s) = G: HI-s. 
HER'O 

THEOREM 2.15. Let G be a compact p-adic analytic group. Then (GP(S) 
is a rational function in p-8. 

Proof. Let G1 be a uniformly powerful subgroup of G and K be a normal 
subgroup of G with the property that G1 < K. Fix a good basis (xi,... ,xd) 
for G1 and a right transversal (Yi,... , Yn) for G1 in G with the property 
that (Y1,... , Yn) is a right transversal for G1 in K. For each i = 1, ...n, 

j = 1, ...,dand k = 1, .. .,mwe define aij and bik E G1 such that 

xj yiXj = ajjyO(jj) 

Yk1 YiYk = bikYMP(ik), 
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where q(i, j) and 4'(i, k) e {1, . . , n}. Define 

X(K) ={H E H I G1H= K} 

and 
Ks) (s)= IK:H VI. 

HE'W(K) 

As in the proof of Theorem B, it suffices to prove the rationality of K 

Let 
K(K)<= U N(H). 

HER<(K) 

Then 

G (s) = C F(gi, ... ,gd+n)d I, 

where c and F(gl,.. 9,gd+n) are defined as in equation (2.5). Thus Theorem 
2.15 reduces to proving that K(K)' is definable. Let (hi,... , hd , t1l... ,tn) E 
Vi(K). There exists H E XH(K) such that (hi,...,hd) is a good basis for 
H1 = H n G1 and (tl, ... ,t ) is a transversal basis for H. Now H is normal 
in G if and only if, for each i, j = 1..., d and k = 1,...,m and = 1,.. ., n, 
we have 

(a) x;lhx3e Hi; 

(b) y-1hiyke H; 
(c) there exists h E H1 such that - 

ltlxjaij = htoqj); and 
(d) there exists h E H1 such that Yk ltlykblk = htfp(l,k). 
Each of the conditions (a)-(d) reduces to a definable formula in LG. The 

conjunction of these formulae with the formula in LG defining the subset K(K) 
defines the set A/(K)'. Since Af(K)' is definable, K),i (s) is rational in p-s. o 

2.3.2. r-Generated subgroups. For each r E N define 

1H(r) = {H <p G I d(H) = r}. 

Note that if G is a compact p-adic analytic group, then G has finite rank. 
This implies that 1t(r) is empty for sufficiently large r. We define 

/dr(s) = E IG: Hs. 

HE'l(r) 

Then (Gpp(s) = ZrENC(bp,(s). In fM], A. Mann has observed that if G is a 
p-adic analytic pro-p-group, these Poincare series satisfy a simple functional 
equation 

d 

Z((p(s) ... (p(s - 1 + 1))(Gap(s) = 1, 

1=1 
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where (p(s) = (1 -p-S)l is the local Riemann zeta function and d is the rank 
of G. We shall prove the following theorem: 

THEOREM 2.16. Let G be a p-adic analytic pro-p-group. Then (Gp(s) is 
rational in p-8 for each r E N. 

First we shall need some preparatory lemmas. Recall that the Frattini 
subgroup of a profinite group is defined by 

D(G) = IM I M is a maximal, proper, open subgroup of G}. 

It has the property that d(G) = d(G/I(G)). If G is a pro-p-group, then 
4>(G) = P2(G) and G/I(G) is an elementary abelian group. Consequently 

d(G) = dimFp(G/I(G)). 

For the rest of this section we fix the following notation: Let G1 be a 
normal uniform pro-p-group in the p-adic analytic pro-p-group G and let K 
be a subgroup of G with G1 < K < G. Let {yj, ... , yn} be a transversal for 
the right cosets of G1 in K such that {Yi, .. ., ys} (s < n) is a transversal for 
G1 in G1i(K). 

LEMMA 2.17. Let H be a subgroup of G with K = G1H. Then 

P(H) = D(K)G1in {M I M < HM =MnG1 

is maximal in H1, MH1 = H}. 

Proof. Let M be a maximal subgroup of H. Then either 
(i) MG1 = L, a maximal subgroup of K and M n G1 = H1, or 
(ii) MH1 = H and M n G1 = M1, a maximal subgroup of H1. 

If G1 < L < K and L is maximal in K, then M = LnH is a maximal subgroup 
of type (i) in H. Thus the intersection of maximal subgroups of type (i) is 
J?(K)G1 n H. Intersecting these with the maximal subgroups of type (ii), we 
have the desired result. n 

LEMMA 2.18. There exists a formula 4(X, Y) in CG such that q(x, y) is 
true if and only if x is a good basis for a subgroup H of G1 and y is a good 
basis for a maximal subgroup M of H. 

Proof. Let 9(X) be the formula ensuring that x is a good basis for some 
subgroup. If x and y are good bases for the subgroups H and J, then J C H 
provided that for each i = 1, . . ., d there exists (A1,..., Ad) E Zd such that 

i = >1 . ... xAdd ~jX1 ~Xd. 
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Let u(X, Y) be this statement. Define the formula r(X, Y) by 

(for all Z) (9(Z) A a(Z, Y) A a(X, Z) 3 (Z, X) V a(Y, Z)). 

Then 
+(X, Y) = 9(X) A 9(Y) A a(X, Y) A r(X, Y). 

LEMMA 2.19. For each i = 1,... , n there exists a formula (i (X, Y, Z) 
with the property that Di(hi, ... , hd, t1,. . ., ts, z) is true if and only if 

(i) (hi, ... ., hdtl, ... , ts) is a basis for some subgroup H E X(K); and 
(ii) zyi E (D(H). 

Proof. If i {, ..., s}, then take (i (X, Y, Z) to be any contradic- 
tion. Suppose that i E {1,... ,s}. Let H(X, Y) be the formula provided by 
Lemma 2.12 with the property that 0(hi,... , hd, t1, ... , t.) is true if and only if 
(hi, ... , hd, t1, ... , t8) E A(K). We first require a formula X(X, Y, U, V) with 
the property that X(x, y, u, v) is true if and only if (x, y) is a basis for a 
subgroup H and (u, v) is a basis for a subgroup M of H with the property 
that M1 = M n G1 is maximal in H1 and MH1 = H. Let a(X,Y,V) be 
the formula in LG defining when Hyi = Hvi for i = 1,... , n. Then X is a 
conjunction of the following formulae: 

(i) H((XIY); 
(ii) 9(U, V); 
(iii) q(X, U); and 
(iv) a (X, Y, V). 
Let Q(X, A) be the statement expressing the fact that there exists 

(A1, *.,Ad) E Zd such that 

a = x1\1 * ** d. a~1 ... Xd 

So the formula (i(X, Y, Z) we want is 

(for all (U, V)) (X(X, Y, U, V) -- 3 (U, (Z Vi-1))) 

LEMMA 2.20. There exists a formula QK(X, Y) with the property that 
QKK(h I... hdt ... ts) is true if and only if 

(i) (hi, ... , hd, t1, ... , ts) is a basis for some subgroup H E XH(K); and 

(ii) d(H) = r. 

Proof. Let Yil... , yn be a transversal for G1 in K. Let i = (i1, *, ir) E 

{1*... I n}r and a = (a,,. * *, ar) E {0, . . . Ip - i}r. Then there exist e(i, a) E 
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{1, ... , n} and a definable function Fia(Xi, .Xr) in LG such that, for all 

glj .. * *Xgr E G17 

(gy1yil. (gryir )Qr = FiCt(gl. . . ,gr)Y(i*a). 

For ij E {1,. . . , n}, define i' (i, j) E {1,. . . , n} and cij by yi(yj)1 = CijYK(ij) 
Now (hi, .. ., hd, t1,. . ., tn) satisfies conditions (i) and (ii) provided that 

(there exist Al, . ,Ar E Zd) 

( V (for all tE tZ A 
i6{ll... nyr j~lle...In} aE{00.. inpl}r 

'-(E(i,a'),j) (h, t, yj1 (h(/i)tj) 1Fi, (h(Al),... , h(Ar))YjCE(i ah)))). 

This is a definable formula in LaG . 

Proof of Theorem 2.16. Again we only have to prove for each subgroup 
K > G1 that 

K S)= Z IK: HI 
HE1-(Kr) 

is rational in p-8, where 'H(K, r) = {H E 1t(r) I G1H = K}. Let 

JVi(K)r= U N(H). 
HEiK(Kr) 

Then 

(a,p (S) = t( F (gi, . ., din) )dp, 

where c and F(g1,..., gd+n) are defined as in equation (2.5). By Lemma 2.20, 
.A(K)r is a definable subset. So CK (s) is a rational function in p-8. El 

2.3.3. Conjugacy classes. Define C(G) to be a set of representatives for 
the conjugacy classes of subgroups of finite index in G. Define 

an(G) = card{H E C(G) I IG: HI = n}. 

In this subsection we consider the following Poincare series: 

(Gap(s) = Zapn(G)p-ns. 
neN 

THEOREM 2.21. If G is a compact p-adic analytic group, then (Gp(s) is 
a rational function in p8s. 

Proof. To prove this theorem we rewrite our Poincare series using the 
fact that the number of subgroups in the conjugacy class of H is IG : NG(H)l. 
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Thus 

(b, (s) = Z IG: H1-81G: NG(H)-1 
H<PG 

- S IG: Kl-IG: LI-' K: HI-'IL: NG(H)-1 
G1 <K-pL<pG HEH(K,L) 

- 5 JG: K| 8IG: LI1-' (KL)(S), 
Gi?<K.lpL<pG 

where X(K, L) = {H I HG1 = K and NG(H)Gi = L}. Now 

C (K~)S) F i (, F(gi,. I gd+n)dpL 
HEIt(K,L) 

|F2 (91i .. * *g d+n)dp) 
N(NG(H)) 

where 
F1 (91, * * *, 9d+n) = Cp-sh(91...X 9d+n)+k(91g..9d+n) 

F2(91i..., 9d+n) = C-ph(gi 9d+n)+k(gl7-.. 9d+n) 

and h and k are defined as in equations (2.3) and (2.4) and c is defined as in 
(2.5). So we have 

(KpL) (S) = |F1(gi. .gd+n F2 (91, . * * *d+n) d 

where X = UHEH(K,L) N(H) x N(NG(H)). The rationality of Cbp(s) then 
reduces to the question of whether X is definable. 

Fix a good basis (Xi,... , Xd) for G1 and a right transversal (Y1,..., Yn) 
for G, in G with the property that (Yi, .. ., Ys) (resp. (Yi, . . . , yj), (Yi, . * * Ym)) 
is a right transversal for K (resp. L, NG(H)) in G. We define aij, bik, q(i, j) 
and 4(i, k) as in Theorem 2.15. 

Now ((hi , ... ., hd, tl, .. ., ts), (k , .. ., kdW,. . ., w)) E X if and only if 
(i) (hi, ... , hd, t1, . ., t.) and (kl, .. . , kd, W1,... ., wl) are bases for some 

subgroups H and M, respectively; and if H1 = H n G,, then 
(ii) kj1 hikj E H1 (i, j = 1, ... . d); 
(iii) y-1wJ-lhiwjyj E H1 (i = 1,...,d and j = 1.... ,1); 
(iv) there exists h e H1 such that 

(kj31tikj)kj1 (yikjy7-1) = hti 

(i= 1,... ,s and j= 1, ..., d); 
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(v) there exists h E H1 such that 

(yj wj1tiwjyj3)yj1 (wj1 (yiwjy, 1 ))yjbij = hto(jj) 

(i= 1, ., s and j = 1, ... .1); 
(vi) for j = 1 + 1, ... , m we have, for all x E G1, there exists h E H1 with 

the property that, for some i = 1, .. ., s, there does not exist h' E H1 such that 

(y-lx lhtixyj)y7 l(x-1(yixy-1))yjbij = h't p(J); 

(vii) for j = 1,... , 1, if x E G1 has the property that, for all h E H1 and 
each i = 1, ... , s, there exists h' E H1 such that 

(y x htixy3)yj (x-1(yixy71))yjbij = h'tp(ij), 

then there exist A1, .l. , Ad E Zp such that 

x = kAl ...kAd 1 d Wi. 

Conditions (ii)-(iv) ensure that H is normal in M and conditions (vi) and 
(vii) ensure that M contains every element that normalizes H. Each of these 
conditions is definable in ?G; hence, (Cp(s) is a rational function in p-S. O 

3. Finitely generated groups 

Let r be a finitely generated group. Then a,(F) is finite for all n > 

1. By forming the pro-p-completion rp of F, we may employ the results of 
the previous sections to deduce rationality results for various Poincare series 
associated with F. The lemma below is basic and describes how much the 
pro-p-completion can tell us about subgroups of finite index in r. 

Let C(F) be a set of representatives for the conjugacy classes of subgroups 
of finite index in F. Define 

a'(r) = card{H < r I Fr HI = n and H is subnormal}, 

a'(r) = card{H < r I Fr HI = n and H is normal}, 

a"(r) = card{H e c(F) I IF H = n and H is subnormal}. 

LEMMA 3.1. (i) apn(r) = apn(rp); 
(ii) apn (r) =apn (rp); 
(iii) apn (r) = apn (rp). 

Proof. For part (i) let G = Fp. Fix n and let A be the intersection of 
all subnormal subgroups of index pn in F. Then F/A is a finite p-group, by 
an elementary argument, so that F/A is isomorphic to a quotient group of 
G. Hence apn(F) = apn(F/A) < apn(G). On the other hand, if H denotes the 
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intersection of all (necessarily open) subgroups of index pn in G, then G/H is a 
finite p-group, and so G/H is isomorphic to a quotient of F. As every subgroup 
of G/H is subnormal, this implies that apn (G) < aspn (G/H) < apsn (F). This 
proves part (i). Parts (ii) and (iii) follow by the same argument. El 

THEOREM 3.2. Let F be a finitely generated group and p a prime. Sup- 
pose that apn (F) grows at most polynomially with pn. Then 

(i) (r p(s) = EnN aPn (r)p-nS is rational in p-8; 
(ii) (7 p(s) = EN apn (r)p-nS is rational in p-8; and 
(iii) GCs(s) = EnN as (f)p-n8 is rational in p-8. 

Proof. By Lemma 3.1, apn(Frp) grows at most polynomially. By [LuM2], 
Theorem 3.1, or [DxduSMS], Theorem 3.19, rp is a p-adic analytic pro-p- 
group. The theorem then follows from Lemma 3.1 and Theorems A, 2.15 
and 2.21. L 

Parts (ii) and (iii) of the theorem are slightly unsatisfactory, since we 
would prefer a condition about the growth of apn (F) and apsn (F). At present it 
is still an open problem to characterize pro-p-groups for which apn (G) grows 
polynomially. Such groups include pro-p-groups G of finite width, i.e., those 
pro-p-groups for which there is a bound on the rank of central sections of 
G. This is a wider class of groups than p-adic analytic groups. For example, 
the class of analytic groups over Fp[[t]] has finite width, as does the so-called 
Nottingham Group (see [Y] for details), a pro-p-group, which is thought not 
to be analytic in either sense. 

Question. Does finite width characterize the class of pro-p-groups for 
which apn (G) grows polynomially? 

Let r be a finitely generated, residually finite p-group. Then apn (F) grows 
at most polynomially if and only if Fp is a p-adic analytic pro-p-group if and 
only if there is a bound on the rank of all finite p-quotients of F. This class 
of groups is a subclass of all linear groups over Zp (see [DxduSMS], Thm. 6.3). 
However it is not clear which linear groups are characterized by this condition. 
For instance, if we consider F = SL2 (Z), then F contains a residually finite 
p-subgroup FO of finite index for which apn (Fo) grows faster than polynomially. 
By Theorem 6.39 of [DxduSMS], the class of groups F for which Fp is a p- 
adic analytic pro-p-group includes the arithmetic groups with the congruence 
subgroup property and strong approximation. In a sequel [duS2] we shall 
use Guralnick's classification of subgroups of prime-power index in simple 
groups (cf. [Gu]) together with Shorey and Tijdeman's work on exponential 
diophantine equations (cf. [ShT]) to prove that the Poincare series, counting 
all subgroups of p-power index in such groups, is rational in p-s. We do this 
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by identifying a compact p-adic analytic group, whose subgroups of p-power 
index are in one-to-one correspondence with the subgroups of p-power index 
inside the arithmetic group. 

In the next theorem we describe another class of groups for which we can 
identify such a compact p-adic analytic group. Recall that 

(i) a chief factor of F is a section M/N, where N is a normal subgroup 
in F and M/N is a minimal normal subgroup of F/N, and 

(ii) an upper p-chief factor of r is a chief factor of some finite quotient 
of r, whose order is divisible by p. 

THEOREM 3.3. Let r be a finitely generated group and p a prime. Let 
ro = ns cr(S), where S ranges over all upper p-chief factors of r. Suppose 
that 

(i) the orders of all upper p-chief factors of r are bounded, and 
(ii) apn (ro) grows at most polynomially with pf. 
Then (r,p(s) is rational in p-s. 

Proof. Since the orders of all upper p-chief factors of r are bounded and 
r is finitely generated, ro is a characteristic subgroup of finite index in r. 
Let H be a subgroup of ro of p-power index. Let KA be the largest normal 
subgroup of r contained in H and let K2 be a normal subgroup such that 
I2/K1 is a chief factor of r. Then K3 = K2H ; H. Since H has p-power 
index in ro, the order of K2/1K1 is divisible by p. Thus K2/1? is centralized 
by Fo. This implies that H < K3, since if k E K2 and h E H, then 

hk = h[h, k] E HK1 < H. 

Thus, by iterating this argument, we can prove that H is subnormal in Fo. 
Let G = NliMFNPro /N and Go = liMNIPro roN. By supposition (ii) 

and Theorem 3.19 of [DxduSMS], Go is an analytic pro-p-group. As G is 
a finite extension of Go, it is also a compact p-adic analytic group. The 
group G has the property that apn(r) = apn(G). So Theorem 3.3 follows from 
Theorem B. S 

Definition 3.4. The upper p-rank of r is defined to be the supremum of 
r(P) as P ranges over all p-subgroups of finite quotients of r. 

THEOREM 3.5. If r is a finitely generated group with finite upper p-rank, 
then (r,p(s) is rational in p8s. 

Proof. If H is a subgroup of finite index in r, then it also has finite 
upper p-rank. This implies that apn(ro) grows at most polynomially in pn 

by the remarks following Theorem 3.2. From Proposition 6.12 of [DxduSMS] 
there exists a normal subgroup r1 of finite index in F with the property that 
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every finite quotient of F, has a normal p-complement. (Recall that a normal 
p-complement in a finite group H of order p m, where p { m, is a normal 
subgroup of H of order m.) It suffices to prove that every upper p-chief factor 
S = M/N of F with N < M < Fi has bounded order. Let K/N be a normal 
p-complement for F,/N. Since IM/NI is divisible by p, K n M < M. Thus 
MP[M, M] : M. But MP[M, M] -Q r. So M/N is an elementary abelian p- 
group of bounded rank, since r has finite upper p-rank. It follows that the 
order of all upper p-chief factors of F is bounded and, hence, (r,p(S) is rational 
in pus by Theorem 3.3. C 

For the class of finitely generated, residually finite groups r of finite rank 
note that (rp(s) is rational in pus for all primes p. This class of groups 
is precisely the class of finitely generated, residually finite groups for which 
an(F) grows at most polynomially, namely the class of virtually soluble groups 
of finite rank (see [LuMI], [LuM2J). However we shall show in [duS2J that there 
are many groups outside this class for which (r,p(s) is rational in p-s for all 
primes p. 

ALL SOULS COLLEGE, OXFORD, ENGLAND 
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